ChatGPT与GPT的区别与联系
ChatGPT 和 GPT 都是基于 Transformer 架构的语言模型,但它们有不同的侧重点和应用。下面我们来探讨一下它们的区别与联系。
1. GPT(Generative Pre-trained Transformer)
GPT 是一类由 OpenAI 开发的语言模型,基于 Transformer 架构。GPT系列的模型(如GPT-1, GPT-2, GPT-3, GPT-4等)在多个自然语言处理任务中表现出色,尤其在生成任务上,如文本生成、自动摘要、语言翻译等。
核心特点:
- 自回归生成模型:GPT使用自回归方式生成文本,每次生成一个词,依赖于之前生成的所有词。
- 大规模预训练:GPT模型使用大量未标注的文本数据进行预训练,通过最大化下一个词的预测概率来学习语言的语法和语义知识。
- 多用途模型:GPT在完成生成任务的同时,也可以进行许多下游任务,如情感分析、问答、文本生成等(通常需要微调)。
示例:
- GPT-3 是目前较为知名的版本,具有1750亿参数,广泛应用于生成文本、编程辅助、自动化内容创作等场景。
2. ChatGPT
ChatGPT 是基于 GPT 系列模型(特别是GPT-3.5和GPT-4)构建的一个聊天机器人产品,专门优化和设计用于进行自然语言对话。ChatGPT不仅仅是一个语言生成模型,它经过微调,使其更加适合人机对话,能更好地理解和生成连贯的对话。
核心特点:
- 专为对话优化:ChatGPT不仅仅依赖于GPT的语言生成能力,还经过了专门的微调,以便能够处理对话中的上下文,理解多轮对话中的细节,并能够根据用户的询问给出更准确、自然的回答。
- 安全性和指导:ChatGPT还包括了一些安全性和道德方面的设计,例如限制其生成不合适的内容、过滤有害信息等。
- 交互性:与传统GPT模型不同,ChatGPT专门设计为一个交互式的应用,用户可以与它进行更自然、流畅的对话,进行日常问答、问题解决等。
示例:
- ChatGPT应用场景:对话助手、虚拟客服、教育辅导、内容生成、编程问题解答等。
3. 区别总结
| 特性 | GPT(Generative Pre-trained Transformer) | ChatGPT |
|---|---|---|
| 基本模型 | 基于GPT系列(如GPT-3、GPT-4)的生成模型 | 基于GPT模型(如GPT-3.5、GPT-4)构建的对话机器人 |
| 目标 | 生成自然语言文本,可应用于多种任务(如文本生成、翻译、摘要等) | 专门优化为进行对话任务,支持多轮对话和交互 |
| 应用领域 | 文本生成、情感分析、机器翻译、总结等 | 主要是对话生成、客服、互动问答、虚拟助手等 |
| 对话能力 | 可用于生成单一的文本或完成指定任务,但不专注于多轮对话 | 专注于多轮对话,能够记住对话上下文并进行有逻辑的回复 |
| 微调 | GPT可以进行不同任务的微调,如情感分析、摘要等 | ChatGPT通过专门的对话数据进行微调,优化对话和交互能力 |
| 交互设计 | 基本的生成任务,用户需提供明确的输入提示 | 设计为与用户进行自然、流畅的交互,支持多轮对话 |
4. 联系
ChatGPT是建立在GPT的基础上的,但它针对对话交互进行了一些专门的优化和微调。也就是说,ChatGPT使用的实际上是GPT的某个版本(如GPT-3.5、GPT-4),但其区别在于:
- 专注对话生成:ChatGPT经过优化,特别擅长于自然对话和交互,而GPT的应用则更广泛,包括文本生成、翻译、摘要、创作等。
- 对话上下文管理:ChatGPT可以处理多个对话轮次,记住上下文,而普通的GPT模型可能只处理当前输入的文本,不具备对话历史的记忆能力。
5. 总结
- GPT 是一个通用的生成模型,适用于多种自然语言处理任务,具有很强的文本生成能力。
- ChatGPT 是基于GPT模型的聊天机器人,经过特别的微调,专注于与用户进行自然、连贯的对话,支持多轮交互。
简单来说,ChatGPT 可以被看作是一个对话形式的 GPT模型,但其在对话生成、上下文理解和多轮对话管理上进行了优化。
6. 从GPT到ChatGPT和GPT-4的关键技术
| 技术 | 说明 |
|---|---|
| 超大规模预训练模型 | ChatGPT 基于 GPT - 3 的底层架构,拥有大量的参数。研究者发现,随着模型参数对数级的增长,模型的能力也在不断提升,尤其在参数数量超过 600 亿时,推理能力得以显现 |
| 提示 / 指令模式(Prompt/Instruct Learning) | 在 ChatGPT 中,各种自然语言处理任务都被统一为提示形式。通过提示工程,ChatGPT 采用了更加精确的提示来引导模型生成期望的回答,提高了模型在特定场景下的准确性和可靠性。通过指令学习,研究人员提高了模型在零样本任务处理方面的能力 |
| 思维链(Chain of Thought) | 研究表明,通过使用代码数据进行训练,语言模型可以获得推理能力。这可能是因为代码(包括注释)通常具有很强的逻辑性,使模型学到了处理问题的逻辑能力 |
| 基于人类反馈的强化学习(Reinforcement Learning from Human Feedback, RLHF) | 相较于 GPT - 3,ChatGPT 在对话友好性方面有所提升。研究人员利用人类对答案的排序、标注,通过强化学习将这种 “人类偏好” 融入 ChatGPT 中,使模型的输出更加友好和安全 |
| 控制性能(Controllability) | 相较于 GPT - 3,通过有针对性地微调,ChatGPT 在生成过程中能够更好地控制生成文本的长度、风格、内容等,使其在处理聊天场景的任务上表现得更好 |
| 安全性和道德责任 | 从 GPT - 3 到 ChatGPT,OpenAI 开始关注模型的安全性和道德责任问题。为了减少模型产生的不当或具有偏见的回复,OpenAI 在模型微调过程中增加了特定的安全性和道德约束 |
相关文章:
ChatGPT与GPT的区别与联系
ChatGPT 和 GPT 都是基于 Transformer 架构的语言模型,但它们有不同的侧重点和应用。下面我们来探讨一下它们的区别与联系。 1. GPT(Generative Pre-trained Transformer) GPT 是一类由 OpenAI 开发的语言模型,基于 Transformer…...
MySQL入门 – CRUD基本操作
MySQL入门 – CRUD基本操作 Essential CRUD Manipulation to MySQL Database By JacksonML 本文简要介绍操作MySQL数据库的基本操作,即创建(Create), 读取(Read), 更新(Update)和删除(Delete)。 基于数据表的关系型…...
Redis背景介绍
⭐️前言⭐️ 本文主要做Redis相关背景介绍,包括核心能力、重要特性和使用场景。 🍉欢迎点赞 👍 收藏 ⭐留言评论 🍉博主将持续更新学习记录收获,友友们有任何问题可以在评论区留言 🍉博客中涉及源码及博主…...
PPT演示设置:插入音频同步切换播放时长计算
PPT中插入音频&同步切换&放时长计算 一、 插入音频及音频设置二、设置页面切换和音频同步三、播放时长计算 一、 插入音频及音频设置 1.插入音频:点击菜单栏插入-音频-选择PC上的音频(已存在的音频)或者录制音频(现场录制…...
DIFY源码解析
偶然发现Github上某位大佬开源的DIFY源码注释和解析,目前还处于陆续不断更新地更新过程中,为大佬的专业和开源贡献精神点赞。先收藏链接,后续慢慢学习。 相关链接如下: DIFY源码解析...
[权限提升] Wdinwos 提权 维持 — 系统错误配置提权 - Trusted Service Paths 提权
关注这个专栏的其他相关笔记:[内网安全] 内网渗透 - 学习手册-CSDN博客 0x01:Trusted Service Paths 提权原理 Windows 的服务通常都是以 System 权限运行的,所以系统在解析服务的可执行文件路径中的空格的时候也会以 System 权限进行解析&a…...
【算法】回溯算法专题② ——组合型回溯 + 剪枝 python
目录 前置知识进入正题小试牛刀实战演练总结 前置知识 【算法】回溯算法专题① ——子集型回溯 python 进入正题 组合https://leetcode.cn/problems/combinations/submissions/596357179/ 给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。 你可以…...
LeetCode:121.买卖股票的最佳时机1
跟着carl学算法,本系列博客仅做个人记录,建议大家都去看carl本人的博客,写的真的很好的! 代码随想录 LeetCode:121.买卖股票的最佳时机1 给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票…...
pytorch生成对抗网络
人工智能例子汇总:AI常见的算法和例子-CSDN博客 生成对抗网络(GAN,Generative Adversarial Network)是一种深度学习模型,由两个神经网络组成:生成器(Generator)和判别器࿰…...
Visual Studio Code应用本地部署的deepseek
1.打开Visual Studio Code,在插件中搜索continue,安装插件。 2.添加新的大语言模型,我们选择ollama. 3.直接点connect,会链接本地下载好的deepseek模型。 参看上篇文章:deepseek本地部署-CSDN博客 4.输入需求生成可用…...
用 HTML、CSS 和 JavaScript 实现抽奖转盘效果
顺序抽奖 前言 这段代码实现了一个简单的抽奖转盘效果。页面上有一个九宫格布局的抽奖区域,周围八个格子分别放置了不同的奖品名称,中间是一个 “开始抽奖” 的按钮。点击按钮后,抽奖区域的格子会快速滚动,颜色不断变化…...
Skewer v0.2.2安装与使用-生信工具43
01 Skewer 介绍 Skewer(来自于 SourceForge)实现了一种基于位掩码的 k-差异匹配算法,专门用于接头修剪,特别设计用于处理下一代测序(NGS)双端序列。 fastp安装及使用-fastp v0.23.4(bioinfoma…...
C语言:链表排序与插入的实现
好的!以下是一篇关于这段代码的博客文章: 从零开始:链表排序与插入的实现 在数据结构的学习中,链表是一种非常基础且重要的数据结构。今天,我们将通过一个简单的 C 语言程序,来探讨如何实现一个从小到大排序的链表,并在其中插入一个新的节点。这个过程不仅涉及链表的基…...
【Elasticsearch】doc_values 可以用于查询操作
确实,doc values 可以用于查询操作,尽管它们的主要用途是支持排序、聚合和脚本中的字段访问。在某些情况下,Elasticsearch 也会利用 doc values 来执行特定类型的查询。以下是关于 doc values 在查询操作中的使用及其影响的详细解释ÿ…...
深度学习深度解析:从基础到前沿
引言 深度学习作为人工智能的一个重要分支,通过模拟人脑的神经网络结构来进行数据分析和模式识别。它在图像识别、自然语言处理、语音识别等领域取得了显著成果。本文将深入探讨深度学习的基础知识、主要模型架构以及当前的研究热点和发展趋势。 基础概念与数学原理…...
JVM的GC详解
获取GC日志方式大抵有两种 第一种就是设定JVM参数在程序启动时查看,具体的命令参数为: -XX:PrintGCDetails # 打印GC日志 -XX:PrintGCTimeStamps # 打印每一次触发GC时发生的时间第二种则是在服务器上监控:使用jstat查看,如下所示,命令格式为jstat -gc…...
【开源免费】基于Vue和SpringBoot的校园网上店铺系统(附论文)
本文项目编号 T 187 ,文末自助获取源码 \color{red}{T187,文末自助获取源码} T187,文末自助获取源码 目录 一、系统介绍二、数据库设计三、配套教程3.1 启动教程3.2 讲解视频3.3 二次开发教程 四、功能截图五、文案资料5.1 选题背景5.2 国内…...
测压表压力表计量表针头针尾检测数据集VOC+YOLO格式4862张4类别
数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):4862 标注数量(xml文件个数):4862 标注数量(txt文件个数):4862 …...
Vue 3 30天精进之旅:Day 12 - 异步操作
在现代前端开发中,异步操作是一个非常常见的需求,例如从后端API获取数据、进行文件上传等任务。Vue 3 结合组合式API和Vuex可以方便地处理这些异步操作。今天我们将重点学习如何在Vue应用中进行异步操作,包括以下几个主题: 异步操…...
【网络】3.HTTP(讲解HTTP协议和写HTTP服务)
目录 1 认识URL1.1 URI的格式 2 HTTP协议2.1 请求报文2.2 响应报文 3 模拟HTTP3.1 Socket.hpp3.2 HttpServer.hpp3.2.1 start()3.2.2 ThreadRun()3.2.3 HandlerHttp() 总结 1 认识URL 什么是URI? URI 是 Uniform Resource Identifier的缩写&…...
地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
Linux nano命令的基本使用
参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时,显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...
