当前位置: 首页 > news >正文

OpenCV:闭运算

目录

1. 简述

2. 用膨胀和腐蚀实现闭运算

2.1 代码示例

2.2 运行结果

3. 闭运算接口

3.1 参数详解

3.2 代码示例

3.3 运行结果

4. 闭运算的应用场景

5. 注意事项


相关阅读

OpenCV:图像的腐蚀与膨胀-CSDN博客

OpenCV:开运算-CSDN博客


1. 简述

简而言之:闭运算 = 膨胀 + 腐蚀

闭运算是一种形态学操作,用于填补前景物体中的小孔洞、连接断裂部分以及平滑前景边缘。
它的操作顺序是:

  1. 膨胀:先扩展前景物体,使前景变大。
  2. 腐蚀:再缩小前景物体,恢复形状。

闭运算的作用可以概括为:

  • 填补前景中的小空隙。
  • 连接相近的前景区域。
  • 平滑边界。

数学表达式为:

A \bullet B = \left ( A \oplus B \right ) \ominus B

其中:

  • A 是输入图像。
  • B 是卷积核。
  • ⊕ 表示膨胀操作。
  • ⊖ 表示腐蚀操作。

2. 用膨胀和腐蚀实现闭运算

2.1 代码示例

import cv2
import numpy as npimage = cv2.imread('D:\\resource\\filter\\q4.jpg')# 卷积核
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (7, 7))# 膨胀操作
result1 = cv2.dilate(image, kernel, iterations=1)# 腐蚀操作
result2 = cv2.erode(result1, kernel, iterations=1)# 显示原始图像、闭运算(膨胀 + 腐蚀)图像
cv2.imshow('image', image)
cv2.imshow('result2', result2)cv2.waitKey(0)
cv2.destroyAllWindows()

2.2 运行结果

从左到右:

  • 原始黑底白字图像,白字内部带一些黑色的噪点。
  • 图像进行膨胀、腐蚀之后的结果,内部黑色噪点消失。 

3. 闭运算接口

在 OpenCV 中,闭运算由函数 cv2.morphologyEx() 实现,其关键参数如下:

cv2.morphologyEx(src, op, kernel, dst=None, anchor=(-1, -1), iterations=1, borderType=cv2.BORDER_CONSTANT, borderValue=0)

3.1 参数详解

  • src:输入图像。通常是二值化图像或灰度图像。
  • op:操作类型,闭运算的标识符为 cv2.MORPH_CLOSE。
  • kernel:结构元素(卷积核),决定形态学操作的范围和形状。
  • dst:输出图像。默认为 None。
  • anchor:结构元素的锚点,默认为 (-1, -1),即以核的中心为锚点。
  • iterations:操作的迭代次数,默认为 1。
  • borderType:边界模式,定义图像边界的填充方式,常用 cv2.BORDER_CONSTANT。
  • borderValue:边界值,仅在 borderType 为 cv2.BORDER_CONSTANT 时使用。

    常用的参数为前3个:

    cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel)

    3.2 代码示例

    import cv2
    import numpy as npimage = cv2.imread('D:\\resource\\filter\\q4.jpg')# 卷积核
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (7, 7))# 膨胀操作
    #result1 = cv2.dilate(image, kernel, iterations=1)# 腐蚀操作
    #result2 = cv2.erode(result1, kernel, iterations=1)# 闭运算
    result2 = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel)# 显示原始图像、闭运算(膨胀 + 腐蚀)图像
    cv2.imshow('image', image)
    cv2.imshow('result2', result2)cv2.waitKey(0)
    cv2.destroyAllWindows()
    

    3.3 运行结果


    4. 闭运算的应用场景

    • 填补前景中的小孔洞:闭运算可以有效填补前景区域中的小空洞,从而使目标更加完整。
    • 连接断裂的前景区域:当前景物体存在细小的断裂区域时,闭运算可以将其连接起来。
    • 平滑前景边界:通过闭运算,前景的边界可以变得更加平滑,去除不必要的凹陷。

    5. 注意事项

    • 核的大小:选择适当的核大小尤为重要,过大或过小的核可能会导致处理效果不佳。
    • 输入图像类型:通常对二值化图像进行闭运算效果更明显。
    • 迭代次数:可以通过调整迭代次数来进一步增强效果。

    相关文章:

    OpenCV:闭运算

    目录 1. 简述 2. 用膨胀和腐蚀实现闭运算 2.1 代码示例 2.2 运行结果 3. 闭运算接口 3.1 参数详解 3.2 代码示例 3.3 运行结果 4. 闭运算的应用场景 5. 注意事项 相关阅读 OpenCV:图像的腐蚀与膨胀-CSDN博客 OpenCV:开运算-CSDN博客 1. 简述…...

    Python | Pytorch | Tensor知识点总结

    如是我闻: Tensor 是我们接触Pytorch了解到的第一个概念,这里是一个关于 PyTorch Tensor 主题的知识点总结,涵盖了 Tensor 的基本概念、创建方式、运算操作、梯度计算和 GPU 加速等内容。 1. Tensor 基本概念 Tensor 是 PyTorch 的核心数据结…...

    aws(学习笔记第二十六课) 使用AWS Elastic Beanstalk

    aws(学习笔记第二十六课) 使用aws Elastic Beanstalk 学习内容: AWS Elastic Beanstalk整体架构AWS Elastic Beanstalk的hands onAWS Elastic Beanstalk部署node.js程序包练习使用AWS Elastic Beanstalk的ebcli 1. AWS Elastic Beanstalk整体架构 官方的guide AWS…...

    《OpenCV》——图像透视转换

    图像透视转换简介 在 OpenCV 里,图像透视转换属于重要的几何变换,也被叫做投影变换。下面从原理、实现步骤、相关函数和应用场景几个方面为你详细介绍。 原理 实现步骤 选取对应点:要在源图像和目标图像上分别找出至少四个对应的点。这些对…...

    9 点结构模块(point.rs)

    一、point.rs源码 use super::UnknownUnit; use crate::approxeq::ApproxEq; use crate::approxord::{max, min}; use crate::length::Length; use crate::num::*; use crate::scale::Scale; use crate::size::{Size2D, Size3D}; use crate::vector::{vec2, vec3, Vector2D, V…...

    Java线程认识和Object的一些方法ObjectMonitor

    专栏系列文章地址:https://blog.csdn.net/qq_26437925/article/details/145290162 本文目标: 要对Java线程有整体了解,深入认识到里面的一些方法和Object对象方法的区别。认识到Java对象的ObjectMonitor,这有助于后面的Synchron…...

    【高等数学】贝塞尔函数

    贝塞尔函数(Bessel functions)是数学中一类重要的特殊函数,通常用于解决涉及圆对称或球对称的微分方程。它们在物理学、工程学、天文学等多个领域都有广泛的应用,例如在波动方程、热传导方程、电磁波传播等问题中。 贝塞尔函数的…...

    99.20 金融难点通俗解释:中药配方比喻马科维茨资产组合模型(MPT)

    目录 0. 承前1. 核心知识点拆解2. 中药搭配比喻方案分析2.1 比喻的合理性 3. 通俗易懂的解释3.1 以中药房为例3.2 配方原理 4. 实际应用举例4.1 基础配方示例4.2 效果说明 5. 注意事项5.1 个性化配置5.2 定期调整 6. 总结7. 代码实现 0. 承前 本文主旨: 本文通过中…...

    实现使用K210单片机进行猫脸检测,并在检测到猫脸覆盖屏幕50%以上时执行特定操作

    要实现使用K210单片机进行猫脸检测,并在检测到猫脸覆盖屏幕50%以上时执行特定操作,以及通过WiFi上传图片到微信小程序,并在微信小程序中上传图片到开发板进行训练,可以按照以下步骤进行: 1. 硬件连接 确保K210开发板…...

    小程序设计和开发:如何研究同类型小程序的优点和不足。

    一、确定研究目标和范围 明确研究目的 在开始研究同类型小程序之前,首先需要明确研究的目的。是为了改进自己的小程序设计和开发,还是为了了解市场趋势和用户需求?不同的研究目的会影响研究的方法和重点。例如,如果研究目的是为了…...

    tiktok 国际版抖抖♬♬ X-Bogus参数算法逆向分析

    加密请求参数得到乱码,最终得到X-Bogus...

    Redis 基础命令

    1. redis 命令官网 https://redis.io/docs/latest/commands/ 2. 在 redis-cli 中使用 help 命令 # 查看 help string 基础命令 keys * # * 代表通配符set key value # 设置键值对del key # 删除键expire key 时间 # 给键设置时间 # -2 代表时间到期了, -1 代表…...

    深入解析Python机器学习库Scikit-Learn的应用实例

    深入解析Python机器学习库Scikit-Learn的应用实例 随着人工智能和数据科学领域的迅速发展,机器学习成为了当下最炙手可热的技术之一。而在机器学习领域,Python作为一种功能强大且易于上手的编程语言,拥有庞大的生态系统和丰富的机器学习库。其…...

    专业的定制版软件,一键操作,无限使用

    今天给大家介绍一个专业的PDF转word的小软件,软件只有5.5M。非常小,而且没有文档大小的限制,可以随意使用。 PDFtu PDF转word 软件第一次使用需要安装一下。 安装好之后,我们就能在桌面找到对应的图标,打开就能直接使…...

    小程序-基础加强

    前言 这一节把基础加强讲完 1. 导入需要用到的小程序项目 2. 初步安装和使用vant组件库 这里还可以扫描二维码 其中步骤四没什么用 右键选择最后一个 在开始之前,我们的项目根目录得有package.json 没有的话,我们就初始化一个 但是我们没有npm这个…...

    pytorch实现基于Word2Vec的词嵌入

    PyTorch 实现 Word2Vec(Skip-gram 模型) 的完整代码,使用 中文语料 进行训练,包括数据预处理、模型定义、训练和测试。 1. 主要特点 支持中文数据,基于 jieba 进行分词 使用 Skip-gram 进行训练,适用于小数…...

    流媒体娱乐服务平台在AWS上使用Presto作为大数据的交互式查询引擎的具体流程和代码

    一家流媒体娱乐服务平台拥有庞大的用户群体和海量的数据。为了高效处理和分析这些数据,它选择了Presto作为其在AWS EMR上的大数据查询引擎。在AWS EMR上使用Presto取得了显著的成果和收获。这些成果不仅提升了数据查询效率,降低了运维成本,还…...

    鸿蒙 循环控制 简单用法

    效果 简单使用如下: class Item {id: numbername: stringprice: numberimg: stringdiscount: numberconstructor(id: number, name: string, price: number, img: string, discount: number) {this.id idthis.name namethis.price pricethis.img imgthis.discou…...

    四、GPIO中断实现按键功能

    4.1 GPIO简介 输入输出(I/O)是一个非常重要的概念。I/O泛指所有类型的输入输出端口,包括单向的端口如逻辑门电路的输入输出管脚和双向的GPIO端口。而GPIO(General-Purpose Input/Output)则是一个常见的术语&#xff0c…...

    Linux安装zookeeper

    1, 下载 Apache ZooKeeperhttps://zookeeper.apache.org/releases.htmlhttps://zookeeper.apache.org/releases.htmlhttps://zookeeper.apache.org/releases.htmlhttps://zookeeper.apache.org/releases.htmlhttps://zookeeper.apache.org/releases.htmlhttps://zookeeper.apa…...

    国防科技大学计算机基础课程笔记02信息编码

    1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...

    TDengine 快速体验(Docker 镜像方式)

    简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...

    工业安全零事故的智能守护者:一体化AI智能安防平台

    前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...

    04-初识css

    一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

    uniapp中使用aixos 报错

    问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

    探索Selenium:自动化测试的神奇钥匙

    目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

    2025年低延迟业务DDoS防护全攻略:高可用架构与实战方案

    一、延迟敏感行业面临的DDoS攻击新挑战 2025年&#xff0c;金融交易、实时竞技游戏、工业物联网等低延迟业务成为DDoS攻击的首要目标。攻击呈现三大特征&#xff1a; AI驱动的自适应攻击&#xff1a;攻击流量模拟真实用户行为&#xff0c;差异率低至0.5%&#xff0c;传统规则引…...

    2025年- H71-Lc179--39.组合总和(回溯,组合)--Java版

    1.题目描述 2.思路 当前的元素可以重复使用。 &#xff08;1&#xff09;确定回溯算法函数的参数和返回值&#xff08;一般是void类型&#xff09; &#xff08;2&#xff09;因为是用递归实现的&#xff0c;所以我们要确定终止条件 &#xff08;3&#xff09;单层搜索逻辑 二…...

    高效的后台管理系统——可进行二次开发

    随着互联网技术的迅猛发展&#xff0c;企业的数字化管理变得愈加重要。后台管理系统作为数据存储与业务管理的核心&#xff0c;成为了现代企业不可或缺的一部分。今天我们要介绍的是一款名为 若依后台管理框架 的系统&#xff0c;它不仅支持跨平台应用&#xff0c;还能提供丰富…...

    二叉树-144.二叉树的前序遍历-力扣(LeetCode)

    一、题目解析 对于递归方法的前序遍历十分简单&#xff0c;但对于一位合格的程序猿而言&#xff0c;需要掌握将递归转化为非递归的能力&#xff0c;毕竟递归调用的时候会调用大量的栈帧&#xff0c;存在栈溢出风险。 二、算法原理 递归调用本质是系统建立栈帧&#xff0c;而非…...