当前位置: 首页 > news >正文

lstm预测

import numpy as np
import pandas as pd
import tensorflow as tf
import math
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from keras.layers import LSTM,Activation,Dense,Dropout# 时间序列数据转换为监督学习的格式
def creatXY(dataset,step):dataX,dataY=[],[]for i in range(len(dataset)-step):a =dataset[i:(i+step),0:dataset.shape[1]]dataX.append(a)b =dataset[i+step,0:dataset.shape[1]]dataY.append(b)return np.array(dataX),np.array(dataY)df = pd.read_csv("output.csv")dataset = np.array(df.iloc[:,0:2])
train_size = int(len(dataset)*0.8)dataset_train = dataset[:train_size,:]
dataset_test = dataset[train_size:,:]# print(dataset_train.shape)# (n,2)
# print(dataset_test.shape)# (n,2)
scaler = MinMaxScaler(feature_range=(0,1))
dataset_train_scaled = scaler.fit_transform(dataset_train)
dataset_test_scaled = scaler.transform(dataset_test)step = 10
trainX,trainY = creatXY(dataset_train_scaled,step)
testX,testY = creatXY(dataset_test_scaled,step)
# #input格式为:[样本数,step数,特征数]
trainX_input = np.reshape(trainX,(len(trainX),step,2))
testX_input = np.reshape(testX,(len(testX),step,2))#
#
model = tf.keras.models.Sequential()
model.add(LSTM(48,return_sequences=True,input_shape=(step,2)))
model.add(LSTM(96,return_sequences=True,input_shape=(step,2)))
model.add(LSTM(48,input_shape=[step,2]))
model.add(Activation('relu'))
model.add(Dense(2))#全连接层
model.compile(loss='mse',optimizer='adam')
model.fit(trainX_input,trainY,batch_size=200,epochs=500)predict_train = model.predict(trainX_input)
predict_test = model.predict(testX_input)result0 = scaler.inverse_transform(predict_train)
result1 = scaler.inverse_transform(predict_test)x0,y0 = result0[:,0],result0[:,1]
x1,y1 = result1[:,0],result1[:,1]
plt.plot(x0,y0,c='r')
plt.plot(x1,y1,c='r')
x = dataset[:,0]
y = dataset[:,1]
plt.plot(x,y)
plt.show()

output.csv:

x,y,thta
0.0,0.0,0.0
0.5,9.5,0.5
1.0,13.4,1.0
1.5,16.4,1.5
2.0,18.9,2.0
2.5,21.1,2.5
3.0,23.0,3.0
3.5,24.9,3.5
4.0,26.5,4.0
4.5,28.1,4.5
5.0,29.6,5.0
5.5,31.0,5.5
6.0,32.3,6.0
6.5,33.6,6.5
7.0,34.8,7.0
7.5,36.0,7.5
8.0,37.1,8.0
8.5,38.2,8.5
9.0,39.2,9.0
9.5,40.2,9.5
10.0,41.2,10.0
10.5,42.2,10.5
11.0,43.1,11.0
11.5,44.0,11.5
12.0,44.9,12.0
12.5,45.8,12.5
13.0,46.6,13.0
13.5,47.4,13.5
14.0,48.2,14.0
14.5,49.0,14.5
15.0,49.7,15.0
15.5,50.5,15.5
16.0,51.2,16.0
16.5,51.9,16.5
17.0,52.6,17.0
17.5,53.3,17.5
18.0,54.0,18.0
18.5,54.7,18.5
19.0,55.3,19.0
19.5,55.9,19.5
20.0,56.6,20.0
20.5,57.2,20.5
21.0,57.8,21.0
21.5,58.4,21.5
22.0,59.0,22.0
22.5,59.5,22.5
23.0,60.1,23.0
23.5,60.6,23.5
24.0,61.2,24.0
24.5,61.7,24.5
25.0,62.2,25.0
25.5,62.8,25.5
26.0,63.3,26.0
26.5,63.8,26.5
27.0,64.3,27.0
27.5,64.8,27.5
28.0,65.2,28.0
28.5,65.7,28.5
29.0,66.2,29.0
29.5,66.6,29.5
30.0,67.1,30.0
30.5,67.5,30.5
31.0,68.0,31.0
31.5,68.4,31.5
32.0,68.8,32.0
32.5,69.2,32.5
33.0,69.6,33.0
33.5,70.1,33.5
34.0,70.5,34.0
34.5,70.9,34.5
35.0,71.2,35.0
35.5,71.6,35.5
36.0,72.0,36.0
36.5,72.4,36.5
37.0,72.7,37.0
37.5,73.1,37.5
38.0,73.5,38.0
38.5,73.8,38.5
39.0,74.2,39.0
39.5,74.5,39.5
40.0,74.8,40.0
40.5,75.2,40.5
41.0,75.5,41.0
41.5,75.8,41.5
42.0,76.1,42.0
42.5,76.4,42.5
43.0,76.8,43.0
43.5,77.1,43.5
44.0,77.4,44.0
44.5,77.7,44.5
45.0,77.9,45.0
45.5,78.2,45.5
46.0,78.5,46.0
46.5,78.8,46.5
47.0,79.1,47.0
47.5,79.3,47.5
48.0,79.6,48.0
48.5,79.9,48.5
49.0,80.1,49.0
49.5,80.4,49.5
50.0,80.6,50.0
50.5,80.9,50.5
51.0,81.1,51.0
51.5,81.3,51.5
52.0,81.6,52.0
52.5,81.8,52.5
53.0,82.0,53.0
53.5,82.3,53.5
54.0,82.5,54.0
54.5,82.7,54.5
55.0,82.9,55.0
55.5,83.1,55.5
56.0,83.3,56.0
56.5,83.5,56.5
57.0,83.7,57.0
57.5,83.9,57.5
58.0,84.1,58.0
58.5,84.3,58.5
59.0,84.5,59.0
59.5,84.7,59.5
60.0,84.9,60.0
60.5,85.0,60.5
61.0,85.2,61.0
61.5,85.4,61.5
62.0,85.5,62.0
62.5,85.7,62.5
63.0,85.9,63.0
63.5,86.0,63.5
64.0,86.2,64.0
64.5,86.3,64.5
65.0,86.5,65.0
65.5,86.6,65.5
66.0,86.7,66.0
66.5,86.9,66.5
67.0,87.0,67.0
67.5,87.1,67.5
68.0,87.3,68.0
68.5,87.4,68.5
69.0,87.5,69.0
69.5,87.6,69.5
70.0,87.7,70.0
70.5,87.9,70.5
71.0,88.0,71.0
71.5,88.1,71.5
72.0,88.2,72.0
72.5,88.3,72.5
73.0,88.4,73.0
73.5,88.5,73.5
74.0,88.6,74.0
74.5,88.7,74.5
75.0,88.7,75.0
75.5,88.8,75.5
76.0,88.9,76.0
76.5,89.0,76.5
77.0,89.1,77.0
77.5,89.1,77.5
78.0,89.2,78.0
78.5,89.3,78.5
79.0,89.3,79.0
79.5,89.4,79.5
80.0,89.4,80.0
80.5,89.5,80.5
81.0,89.5,81.0
81.5,89.6,81.5
82.0,89.6,82.0
82.5,89.7,82.5
83.0,89.7,83.0
83.5,89.8,83.5
84.0,89.8,84.0
84.5,89.8,84.5
85.0,89.9,85.0
85.5,89.9,85.5
86.0,89.9,86.0
86.5,89.9,86.5
87.0,89.9,87.0
87.5,90.0,87.5
88.0,90.0,88.0
88.5,90.0,88.5
89.0,90.0,89.0
89.5,90.0,89.5
90.0,90.0,90.0
90.5,90.0,90.5
91.0,90.0,91.0
91.5,90.0,91.5
92.0,90.0,92.0
92.5,90.0,92.5
93.0,89.9,93.0
93.5,89.9,93.5
94.0,89.9,94.0
94.5,89.9,94.5
95.0,89.9,95.0
95.5,89.8,95.5
96.0,89.8,96.0
96.5,89.8,96.5
97.0,89.7,97.0
97.5,89.7,97.5
98.0,89.6,98.0
98.5,89.6,98.5
99.0,89.5,99.0
99.5,89.5,99.5
100.0,89.4,100.0
100.5,89.4,100.5
101.0,89.3,101.0
101.5,89.3,101.5
102.0,89.2,102.0
102.5,89.1,102.5
103.0,89.1,103.0
103.5,89.0,103.5
104.0,88.9,104.0
104.5,88.8,104.5
105.0,88.7,105.0
105.5,88.7,105.5
106.0,88.6,106.0
106.5,88.5,106.5
107.0,88.4,107.0
107.5,88.3,107.5
108.0,88.2,108.0
108.5,88.1,108.5
109.0,88.0,109.0
109.5,87.9,109.5
110.0,87.7,110.0
110.5,87.6,110.5
111.0,87.5,111.0
111.5,87.4,111.5
112.0,87.3,112.0
112.5,87.1,112.5
113.0,87.0,113.0
113.5,86.9,113.5
114.0,86.7,114.0
114.5,86.6,114.5
115.0,86.5,115.0
115.5,86.3,115.5
116.0,86.2,116.0
116.5,86.0,116.5
117.0,85.9,117.0
117.5,85.7,117.5
118.0,85.5,118.0
118.5,85.4,118.5
119.0,85.2,119.0
119.5,85.0,119.5
120.0,84.9,120.0
120.5,84.7,120.5
121.0,84.5,121.0
121.5,84.3,121.5
122.0,84.1,122.0
122.5,83.9,122.5
123.0,83.7,123.0
123.5,83.5,123.5
124.0,83.3,124.0
124.5,83.1,124.5
125.0,82.9,125.0
125.5,82.7,125.5
126.0,82.5,126.0
126.5,82.3,126.5
127.0,82.0,127.0
127.5,81.8,127.5
128.0,81.6,128.0
128.5,81.3,128.5
129.0,81.1,129.0
129.5,80.9,129.5
130.0,80.6,130.0
130.5,80.4,130.5
131.0,80.1,131.0
131.5,79.9,131.5
132.0,79.6,132.0
132.5,79.3,132.5
133.0,79.1,133.0
133.5,78.8,133.5
134.0,78.5,134.0
134.5,78.2,134.5
135.0,77.9,135.0
135.5,77.7,135.5
136.0,77.4,136.0
136.5,77.1,136.5
137.0,76.8,137.0
137.5,76.4,137.5
138.0,76.1,138.0
138.5,75.8,138.5
139.0,75.5,139.0
139.5,75.2,139.5
140.0,74.8,140.0
140.5,74.5,140.5
141.0,74.2,141.0
141.5,73.8,141.5
142.0,73.5,142.0
142.5,73.1,142.5
143.0,72.7,143.0
143.5,72.4,143.5
144.0,72.0,144.0
144.5,71.6,144.5
145.0,71.2,145.0
145.5,70.9,145.5
146.0,70.5,146.0
146.5,70.1,146.5
147.0,69.6,147.0
147.5,69.2,147.5
148.0,68.8,148.0
148.5,68.4,148.5
149.0,68.0,149.0
149.5,67.5,149.5
150.0,67.1,150.0
150.5,66.6,150.5
151.0,66.2,151.0
151.5,65.7,151.5
152.0,65.2,152.0
152.5,64.8,152.5
153.0,64.3,153.0
153.5,63.8,153.5
154.0,63.3,154.0
154.5,62.8,154.5
155.0,62.2,155.0
155.5,61.7,155.5
156.0,61.2,156.0
156.5,60.6,156.5
157.0,60.1,157.0
157.5,59.5,157.5
158.0,59.0,158.0
158.5,58.4,158.5
159.0,57.8,159.0
159.5,57.2,159.5
160.0,56.6,160.0
160.5,55.9,160.5
161.0,55.3,161.0
161.5,54.7,161.5
162.0,54.0,162.0
162.5,53.3,162.5
163.0,52.6,163.0
163.5,51.9,163.5
164.0,51.2,164.0
164.5,50.5,164.5
165.0,49.7,165.0
165.5,49.0,165.5
166.0,48.2,166.0
166.5,47.4,166.5
167.0,46.6,167.0
167.5,45.8,167.5
168.0,44.9,168.0
168.5,44.0,168.5
169.0,43.1,169.0
169.5,42.2,169.5
170.0,41.2,170.0
170.5,40.2,170.5
171.0,39.2,171.0
171.5,38.2,171.5
172.0,37.1,172.0
172.5,36.0,172.5
173.0,34.8,173.0
173.5,33.6,173.5
174.0,32.3,174.0
174.5,31.0,174.5
175.0,29.6,175.0
175.5,28.1,175.5
176.0,26.5,176.0
176.5,24.9,176.5
177.0,23.0,177.0
177.5,21.1,177.5
178.0,18.9,178.0
178.5,16.4,178.5
179.0,13.4,179.0
179.5,9.5,179.5
180.0,0.0,180.0

相关文章:

lstm预测

import numpy as np import pandas as pd import tensorflow as tf import math import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler from keras.layers import LSTM,Activation,Dense,Dropout# 时间序列数据转换为监督学习的格式 def creatXY(d…...

《 C++ 点滴漫谈: 二十五 》空指针,隐秘而危险的杀手:程序崩溃的真凶就在你眼前!

摘要 本博客全面解析了 C 中指针与空值的相关知识,从基础概念到现代 C 的改进展开,涵盖了空指针的定义、表示方式、使用场景以及常见注意事项。同时,深入探讨了 nullptr 的引入及智能指针在提升代码安全性和简化内存管理方面的优势。通过实际…...

【AI】探索自然语言处理(NLP):从基础到前沿技术及代码实践

Hi ! 云边有个稻草人-CSDN博客 必须有为成功付出代价的决心,然后想办法付出这个代价。 目录 引言 1. 什么是自然语言处理(NLP)? 2. NLP的基础技术 2.1 词袋模型(Bag-of-Words,BoW&#xff…...

2025年Android开发趋势全景解读

文章目录 一、界面开发:从"手写代码"到"智能拼装"1.1 Jetpack Compose实战进化1.2 淘汰XML布局的三大信号 二、AI融合开发:无需炼丹的普惠智能2.1 设备端AI三大杀手级应用2.2 成本对比:设备端VS云端AI 三、跨平台演进&am…...

C#面试常考随笔11:Dictionary<K, V>、Hashtable的内部实现原理是什么?效率如何?

Dictionary<K, V> 底层数据结构&#xff1a;使用哈希表&#xff08;Hash Table&#xff09;&#xff0c;由一个数组和链表&#xff08;或在.NET Core 2.1 及之后版本中&#xff0c;当链表长度达到一定阈值时转换为红黑树&#xff09;组成。数组中的每个元素称为一个桶&a…...

Linux防火墙基础

一、Linux防火墙的状态机制 1.iptables是可以配置有状态的防火墙&#xff0c;其有状态的特点是能够指定并记住发送或者接收信息包所建立的连接状态&#xff0c;其一共有四种状态&#xff0c;分别为established invalid new related。 established:该信息包已建立连接&#x…...

Qt u盘自动升级软件

Qt u盘自动升级软件 Chapter1 Qt u盘自动升级软件u盘自动升级软件思路&#xff1a;step1. 获取U盘 判断U盘名字是否正确&#xff0c; 升级文件是否存在。step2. 升级step3. 升级界面 Chapter2 Qt 嵌入式设备应用程序&#xff0c;通过U盘升级的一种思路Chapter3 在开发板上运行的…...

【Conda 和 虚拟环境详细指南】

Conda 和 虚拟环境的详细指南 什么是 Conda&#xff1f; Conda 是一个开源的包管理和环境管理系统&#xff0c;支持多种编程语言&#xff08;如Python、R等&#xff09;&#xff0c;最初由Continuum Analytics开发。 主要功能&#xff1a; 包管理&#xff1a;安装、更新、删…...

Python递归函数深度解析:从原理到实战

Python递归函数深度解析&#xff1a;从原理到实战 递归是计算机科学中重要的编程范式&#xff0c;也是算法设计的核心思想之一。本文将通过20实战案例&#xff0c;带你深入理解Python递归函数的精髓&#xff0c;掌握递归算法的实现技巧。 一、递归函数核心原理 1.1 递归三要…...

OpenGL学习笔记(五):Textures 纹理

文章目录 纹理坐标纹理环绕方式纹理过滤——处理纹理分辨率低的情况多级渐远纹理Mipmap——处理纹理分辨率高的情况加载与创建纹理 &#xff08; <stb_image.h> &#xff09;生成纹理应用纹理纹理单元练习1练习2练习3练习4 通过上一篇着色部分的学习&#xff0c;我们可以…...

【TypeScript】基础:数据类型

文章目录 TypeScript一、简介二、类型声明三、数据类型anyunknownnervervoidobjecttupleenumType一些特殊情况 TypeScript 是JavaScript的超集&#xff0c;代码量比JavaScript复杂、繁多&#xff1b;但是结构更清晰 一、简介 为什么需要TypeScript&#xff1f; JavaScript的…...

Notepad++消除生成bak文件

设置(T) ⇒ 首选项... ⇒ 备份 ⇒ 勾选 "禁用" 勾选禁用 就不会再生成bak文件了 notepad怎么修改字符集编码格式为gbk 如图所示...

Android NDK

Android NDK环境 D:\Android SDK\ndk\25.2.9519653 使用clang而不用gcc D:\Android SDK\ndk\25.1.8937393\toolchains\llvm\prebuilt\windows-x86_64\bin\clang --version 查看是否安装成功clang ptrace 在 C 语言中&#xff0c;ptrace 已经被 Linux 内核实现&#xff0…...

内部知识库助力组织智力激发与信息共享实现业绩增长

内容概要 内部知识库是企业知识管理的核心组件&#xff0c;具有不可估量的重要性。通过构建有效的知识库&#xff0c;组织能够将孤立的知识和信息整合成为一个系统性的体&#xff0c;极大提高员工访问和利用这些信息的能力。这不仅简化了决策过程&#xff0c;还通过减少重复劳…...

通过F12收集的信息

按 F12 键打开浏览器的开发者工具&#xff08;DevTools&#xff09;可以获取部分操作系统和中间件信息&#xff0c;但能力有限。以下是具体说明&#xff1a; 一、通过 F12 收集的信息 1. 客户端操作系统信息 - Console 控制台 通过 JavaScript 直接获取客户端操作系统信息&am…...

用Python替代OpenMV IDE显示openmv USB 图像

原理是利用openmv的usb模仿串口&#xff0c;然后用Python代码打开串口接收 能替代openmv ide 跑48帧图像 Python端需要的依赖&#xff1a; 需要的是&#xff1a; from ultralytics import YOLO import cv2 import numpy as np from serial import Serial import time from co…...

c语言:编译和链接(详解)

前言 要将编译和链接&#xff0c;就不得不提及编译器是如何运作的&#xff0c;虽然这部分知识是针对于要创造编译器和创作语言的人所需要清楚的&#xff0c;但作为c语言的学习者也需要了解一下&#xff0c;修炼内功&#xff0c;尤其是对于想学习c的人而言。 编译器的运作过程…...

数据结构【单链表操作大全详解】【c语言版】(只有输入输出为了方便用的c++)

单链表操作的C/C实现详解 在数据结构中&#xff0c;单链表是一种非常基础且重要的数据结构。它由一系列节点组成&#xff0c;每个节点包含数据和指向下一个节点的指针。今天我们就来深入探讨用C/C实现的单链表及其各种操作。 一、单链表的定义 const int N 1e5; //单链表 t…...

leetcode27.删除有序数组中的重复项

目录 问题描述判题标准示例提示 具体思路思路一思路二 代码实现 问题描述 给你一个非严格递增排列的数组nums&#xff0c;请你原地删除重复出现的元素&#xff0c;使每个元素只出现一次&#xff0c;返回删除后数组的新长度。元素的相对顺序应该保持一致 。然后返回nums中唯一元…...

[c语言日寄]越界访问:意外的死循环

【作者主页】siy2333 【专栏介绍】⌈c语言日寄⌋&#xff1a;这是一个专注于C语言刷题的专栏&#xff0c;精选题目&#xff0c;搭配详细题解、拓展算法。从基础语法到复杂算法&#xff0c;题目涉及的知识点全面覆盖&#xff0c;助力你系统提升。无论你是初学者&#xff0c;还是…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架&#xff0c;用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录&#xff0c;以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

visual studio 2022更改主题为深色

visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中&#xff0c;选择 环境 -> 常规 &#xff0c;将其中的颜色主题改成深色 点击确定&#xff0c;更改完成...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...