当前位置: 首页 > news >正文

lstm预测

import numpy as np
import pandas as pd
import tensorflow as tf
import math
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from keras.layers import LSTM,Activation,Dense,Dropout# 时间序列数据转换为监督学习的格式
def creatXY(dataset,step):dataX,dataY=[],[]for i in range(len(dataset)-step):a =dataset[i:(i+step),0:dataset.shape[1]]dataX.append(a)b =dataset[i+step,0:dataset.shape[1]]dataY.append(b)return np.array(dataX),np.array(dataY)df = pd.read_csv("output.csv")dataset = np.array(df.iloc[:,0:2])
train_size = int(len(dataset)*0.8)dataset_train = dataset[:train_size,:]
dataset_test = dataset[train_size:,:]# print(dataset_train.shape)# (n,2)
# print(dataset_test.shape)# (n,2)
scaler = MinMaxScaler(feature_range=(0,1))
dataset_train_scaled = scaler.fit_transform(dataset_train)
dataset_test_scaled = scaler.transform(dataset_test)step = 10
trainX,trainY = creatXY(dataset_train_scaled,step)
testX,testY = creatXY(dataset_test_scaled,step)
# #input格式为:[样本数,step数,特征数]
trainX_input = np.reshape(trainX,(len(trainX),step,2))
testX_input = np.reshape(testX,(len(testX),step,2))#
#
model = tf.keras.models.Sequential()
model.add(LSTM(48,return_sequences=True,input_shape=(step,2)))
model.add(LSTM(96,return_sequences=True,input_shape=(step,2)))
model.add(LSTM(48,input_shape=[step,2]))
model.add(Activation('relu'))
model.add(Dense(2))#全连接层
model.compile(loss='mse',optimizer='adam')
model.fit(trainX_input,trainY,batch_size=200,epochs=500)predict_train = model.predict(trainX_input)
predict_test = model.predict(testX_input)result0 = scaler.inverse_transform(predict_train)
result1 = scaler.inverse_transform(predict_test)x0,y0 = result0[:,0],result0[:,1]
x1,y1 = result1[:,0],result1[:,1]
plt.plot(x0,y0,c='r')
plt.plot(x1,y1,c='r')
x = dataset[:,0]
y = dataset[:,1]
plt.plot(x,y)
plt.show()

output.csv:

x,y,thta
0.0,0.0,0.0
0.5,9.5,0.5
1.0,13.4,1.0
1.5,16.4,1.5
2.0,18.9,2.0
2.5,21.1,2.5
3.0,23.0,3.0
3.5,24.9,3.5
4.0,26.5,4.0
4.5,28.1,4.5
5.0,29.6,5.0
5.5,31.0,5.5
6.0,32.3,6.0
6.5,33.6,6.5
7.0,34.8,7.0
7.5,36.0,7.5
8.0,37.1,8.0
8.5,38.2,8.5
9.0,39.2,9.0
9.5,40.2,9.5
10.0,41.2,10.0
10.5,42.2,10.5
11.0,43.1,11.0
11.5,44.0,11.5
12.0,44.9,12.0
12.5,45.8,12.5
13.0,46.6,13.0
13.5,47.4,13.5
14.0,48.2,14.0
14.5,49.0,14.5
15.0,49.7,15.0
15.5,50.5,15.5
16.0,51.2,16.0
16.5,51.9,16.5
17.0,52.6,17.0
17.5,53.3,17.5
18.0,54.0,18.0
18.5,54.7,18.5
19.0,55.3,19.0
19.5,55.9,19.5
20.0,56.6,20.0
20.5,57.2,20.5
21.0,57.8,21.0
21.5,58.4,21.5
22.0,59.0,22.0
22.5,59.5,22.5
23.0,60.1,23.0
23.5,60.6,23.5
24.0,61.2,24.0
24.5,61.7,24.5
25.0,62.2,25.0
25.5,62.8,25.5
26.0,63.3,26.0
26.5,63.8,26.5
27.0,64.3,27.0
27.5,64.8,27.5
28.0,65.2,28.0
28.5,65.7,28.5
29.0,66.2,29.0
29.5,66.6,29.5
30.0,67.1,30.0
30.5,67.5,30.5
31.0,68.0,31.0
31.5,68.4,31.5
32.0,68.8,32.0
32.5,69.2,32.5
33.0,69.6,33.0
33.5,70.1,33.5
34.0,70.5,34.0
34.5,70.9,34.5
35.0,71.2,35.0
35.5,71.6,35.5
36.0,72.0,36.0
36.5,72.4,36.5
37.0,72.7,37.0
37.5,73.1,37.5
38.0,73.5,38.0
38.5,73.8,38.5
39.0,74.2,39.0
39.5,74.5,39.5
40.0,74.8,40.0
40.5,75.2,40.5
41.0,75.5,41.0
41.5,75.8,41.5
42.0,76.1,42.0
42.5,76.4,42.5
43.0,76.8,43.0
43.5,77.1,43.5
44.0,77.4,44.0
44.5,77.7,44.5
45.0,77.9,45.0
45.5,78.2,45.5
46.0,78.5,46.0
46.5,78.8,46.5
47.0,79.1,47.0
47.5,79.3,47.5
48.0,79.6,48.0
48.5,79.9,48.5
49.0,80.1,49.0
49.5,80.4,49.5
50.0,80.6,50.0
50.5,80.9,50.5
51.0,81.1,51.0
51.5,81.3,51.5
52.0,81.6,52.0
52.5,81.8,52.5
53.0,82.0,53.0
53.5,82.3,53.5
54.0,82.5,54.0
54.5,82.7,54.5
55.0,82.9,55.0
55.5,83.1,55.5
56.0,83.3,56.0
56.5,83.5,56.5
57.0,83.7,57.0
57.5,83.9,57.5
58.0,84.1,58.0
58.5,84.3,58.5
59.0,84.5,59.0
59.5,84.7,59.5
60.0,84.9,60.0
60.5,85.0,60.5
61.0,85.2,61.0
61.5,85.4,61.5
62.0,85.5,62.0
62.5,85.7,62.5
63.0,85.9,63.0
63.5,86.0,63.5
64.0,86.2,64.0
64.5,86.3,64.5
65.0,86.5,65.0
65.5,86.6,65.5
66.0,86.7,66.0
66.5,86.9,66.5
67.0,87.0,67.0
67.5,87.1,67.5
68.0,87.3,68.0
68.5,87.4,68.5
69.0,87.5,69.0
69.5,87.6,69.5
70.0,87.7,70.0
70.5,87.9,70.5
71.0,88.0,71.0
71.5,88.1,71.5
72.0,88.2,72.0
72.5,88.3,72.5
73.0,88.4,73.0
73.5,88.5,73.5
74.0,88.6,74.0
74.5,88.7,74.5
75.0,88.7,75.0
75.5,88.8,75.5
76.0,88.9,76.0
76.5,89.0,76.5
77.0,89.1,77.0
77.5,89.1,77.5
78.0,89.2,78.0
78.5,89.3,78.5
79.0,89.3,79.0
79.5,89.4,79.5
80.0,89.4,80.0
80.5,89.5,80.5
81.0,89.5,81.0
81.5,89.6,81.5
82.0,89.6,82.0
82.5,89.7,82.5
83.0,89.7,83.0
83.5,89.8,83.5
84.0,89.8,84.0
84.5,89.8,84.5
85.0,89.9,85.0
85.5,89.9,85.5
86.0,89.9,86.0
86.5,89.9,86.5
87.0,89.9,87.0
87.5,90.0,87.5
88.0,90.0,88.0
88.5,90.0,88.5
89.0,90.0,89.0
89.5,90.0,89.5
90.0,90.0,90.0
90.5,90.0,90.5
91.0,90.0,91.0
91.5,90.0,91.5
92.0,90.0,92.0
92.5,90.0,92.5
93.0,89.9,93.0
93.5,89.9,93.5
94.0,89.9,94.0
94.5,89.9,94.5
95.0,89.9,95.0
95.5,89.8,95.5
96.0,89.8,96.0
96.5,89.8,96.5
97.0,89.7,97.0
97.5,89.7,97.5
98.0,89.6,98.0
98.5,89.6,98.5
99.0,89.5,99.0
99.5,89.5,99.5
100.0,89.4,100.0
100.5,89.4,100.5
101.0,89.3,101.0
101.5,89.3,101.5
102.0,89.2,102.0
102.5,89.1,102.5
103.0,89.1,103.0
103.5,89.0,103.5
104.0,88.9,104.0
104.5,88.8,104.5
105.0,88.7,105.0
105.5,88.7,105.5
106.0,88.6,106.0
106.5,88.5,106.5
107.0,88.4,107.0
107.5,88.3,107.5
108.0,88.2,108.0
108.5,88.1,108.5
109.0,88.0,109.0
109.5,87.9,109.5
110.0,87.7,110.0
110.5,87.6,110.5
111.0,87.5,111.0
111.5,87.4,111.5
112.0,87.3,112.0
112.5,87.1,112.5
113.0,87.0,113.0
113.5,86.9,113.5
114.0,86.7,114.0
114.5,86.6,114.5
115.0,86.5,115.0
115.5,86.3,115.5
116.0,86.2,116.0
116.5,86.0,116.5
117.0,85.9,117.0
117.5,85.7,117.5
118.0,85.5,118.0
118.5,85.4,118.5
119.0,85.2,119.0
119.5,85.0,119.5
120.0,84.9,120.0
120.5,84.7,120.5
121.0,84.5,121.0
121.5,84.3,121.5
122.0,84.1,122.0
122.5,83.9,122.5
123.0,83.7,123.0
123.5,83.5,123.5
124.0,83.3,124.0
124.5,83.1,124.5
125.0,82.9,125.0
125.5,82.7,125.5
126.0,82.5,126.0
126.5,82.3,126.5
127.0,82.0,127.0
127.5,81.8,127.5
128.0,81.6,128.0
128.5,81.3,128.5
129.0,81.1,129.0
129.5,80.9,129.5
130.0,80.6,130.0
130.5,80.4,130.5
131.0,80.1,131.0
131.5,79.9,131.5
132.0,79.6,132.0
132.5,79.3,132.5
133.0,79.1,133.0
133.5,78.8,133.5
134.0,78.5,134.0
134.5,78.2,134.5
135.0,77.9,135.0
135.5,77.7,135.5
136.0,77.4,136.0
136.5,77.1,136.5
137.0,76.8,137.0
137.5,76.4,137.5
138.0,76.1,138.0
138.5,75.8,138.5
139.0,75.5,139.0
139.5,75.2,139.5
140.0,74.8,140.0
140.5,74.5,140.5
141.0,74.2,141.0
141.5,73.8,141.5
142.0,73.5,142.0
142.5,73.1,142.5
143.0,72.7,143.0
143.5,72.4,143.5
144.0,72.0,144.0
144.5,71.6,144.5
145.0,71.2,145.0
145.5,70.9,145.5
146.0,70.5,146.0
146.5,70.1,146.5
147.0,69.6,147.0
147.5,69.2,147.5
148.0,68.8,148.0
148.5,68.4,148.5
149.0,68.0,149.0
149.5,67.5,149.5
150.0,67.1,150.0
150.5,66.6,150.5
151.0,66.2,151.0
151.5,65.7,151.5
152.0,65.2,152.0
152.5,64.8,152.5
153.0,64.3,153.0
153.5,63.8,153.5
154.0,63.3,154.0
154.5,62.8,154.5
155.0,62.2,155.0
155.5,61.7,155.5
156.0,61.2,156.0
156.5,60.6,156.5
157.0,60.1,157.0
157.5,59.5,157.5
158.0,59.0,158.0
158.5,58.4,158.5
159.0,57.8,159.0
159.5,57.2,159.5
160.0,56.6,160.0
160.5,55.9,160.5
161.0,55.3,161.0
161.5,54.7,161.5
162.0,54.0,162.0
162.5,53.3,162.5
163.0,52.6,163.0
163.5,51.9,163.5
164.0,51.2,164.0
164.5,50.5,164.5
165.0,49.7,165.0
165.5,49.0,165.5
166.0,48.2,166.0
166.5,47.4,166.5
167.0,46.6,167.0
167.5,45.8,167.5
168.0,44.9,168.0
168.5,44.0,168.5
169.0,43.1,169.0
169.5,42.2,169.5
170.0,41.2,170.0
170.5,40.2,170.5
171.0,39.2,171.0
171.5,38.2,171.5
172.0,37.1,172.0
172.5,36.0,172.5
173.0,34.8,173.0
173.5,33.6,173.5
174.0,32.3,174.0
174.5,31.0,174.5
175.0,29.6,175.0
175.5,28.1,175.5
176.0,26.5,176.0
176.5,24.9,176.5
177.0,23.0,177.0
177.5,21.1,177.5
178.0,18.9,178.0
178.5,16.4,178.5
179.0,13.4,179.0
179.5,9.5,179.5
180.0,0.0,180.0

相关文章:

lstm预测

import numpy as np import pandas as pd import tensorflow as tf import math import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler from keras.layers import LSTM,Activation,Dense,Dropout# 时间序列数据转换为监督学习的格式 def creatXY(d…...

《 C++ 点滴漫谈: 二十五 》空指针,隐秘而危险的杀手:程序崩溃的真凶就在你眼前!

摘要 本博客全面解析了 C 中指针与空值的相关知识,从基础概念到现代 C 的改进展开,涵盖了空指针的定义、表示方式、使用场景以及常见注意事项。同时,深入探讨了 nullptr 的引入及智能指针在提升代码安全性和简化内存管理方面的优势。通过实际…...

【AI】探索自然语言处理(NLP):从基础到前沿技术及代码实践

Hi ! 云边有个稻草人-CSDN博客 必须有为成功付出代价的决心,然后想办法付出这个代价。 目录 引言 1. 什么是自然语言处理(NLP)? 2. NLP的基础技术 2.1 词袋模型(Bag-of-Words,BoW&#xff…...

2025年Android开发趋势全景解读

文章目录 一、界面开发:从"手写代码"到"智能拼装"1.1 Jetpack Compose实战进化1.2 淘汰XML布局的三大信号 二、AI融合开发:无需炼丹的普惠智能2.1 设备端AI三大杀手级应用2.2 成本对比:设备端VS云端AI 三、跨平台演进&am…...

C#面试常考随笔11:Dictionary<K, V>、Hashtable的内部实现原理是什么?效率如何?

Dictionary<K, V> 底层数据结构&#xff1a;使用哈希表&#xff08;Hash Table&#xff09;&#xff0c;由一个数组和链表&#xff08;或在.NET Core 2.1 及之后版本中&#xff0c;当链表长度达到一定阈值时转换为红黑树&#xff09;组成。数组中的每个元素称为一个桶&a…...

Linux防火墙基础

一、Linux防火墙的状态机制 1.iptables是可以配置有状态的防火墙&#xff0c;其有状态的特点是能够指定并记住发送或者接收信息包所建立的连接状态&#xff0c;其一共有四种状态&#xff0c;分别为established invalid new related。 established:该信息包已建立连接&#x…...

Qt u盘自动升级软件

Qt u盘自动升级软件 Chapter1 Qt u盘自动升级软件u盘自动升级软件思路&#xff1a;step1. 获取U盘 判断U盘名字是否正确&#xff0c; 升级文件是否存在。step2. 升级step3. 升级界面 Chapter2 Qt 嵌入式设备应用程序&#xff0c;通过U盘升级的一种思路Chapter3 在开发板上运行的…...

【Conda 和 虚拟环境详细指南】

Conda 和 虚拟环境的详细指南 什么是 Conda&#xff1f; Conda 是一个开源的包管理和环境管理系统&#xff0c;支持多种编程语言&#xff08;如Python、R等&#xff09;&#xff0c;最初由Continuum Analytics开发。 主要功能&#xff1a; 包管理&#xff1a;安装、更新、删…...

Python递归函数深度解析:从原理到实战

Python递归函数深度解析&#xff1a;从原理到实战 递归是计算机科学中重要的编程范式&#xff0c;也是算法设计的核心思想之一。本文将通过20实战案例&#xff0c;带你深入理解Python递归函数的精髓&#xff0c;掌握递归算法的实现技巧。 一、递归函数核心原理 1.1 递归三要…...

OpenGL学习笔记(五):Textures 纹理

文章目录 纹理坐标纹理环绕方式纹理过滤——处理纹理分辨率低的情况多级渐远纹理Mipmap——处理纹理分辨率高的情况加载与创建纹理 &#xff08; <stb_image.h> &#xff09;生成纹理应用纹理纹理单元练习1练习2练习3练习4 通过上一篇着色部分的学习&#xff0c;我们可以…...

【TypeScript】基础:数据类型

文章目录 TypeScript一、简介二、类型声明三、数据类型anyunknownnervervoidobjecttupleenumType一些特殊情况 TypeScript 是JavaScript的超集&#xff0c;代码量比JavaScript复杂、繁多&#xff1b;但是结构更清晰 一、简介 为什么需要TypeScript&#xff1f; JavaScript的…...

Notepad++消除生成bak文件

设置(T) ⇒ 首选项... ⇒ 备份 ⇒ 勾选 "禁用" 勾选禁用 就不会再生成bak文件了 notepad怎么修改字符集编码格式为gbk 如图所示...

Android NDK

Android NDK环境 D:\Android SDK\ndk\25.2.9519653 使用clang而不用gcc D:\Android SDK\ndk\25.1.8937393\toolchains\llvm\prebuilt\windows-x86_64\bin\clang --version 查看是否安装成功clang ptrace 在 C 语言中&#xff0c;ptrace 已经被 Linux 内核实现&#xff0…...

内部知识库助力组织智力激发与信息共享实现业绩增长

内容概要 内部知识库是企业知识管理的核心组件&#xff0c;具有不可估量的重要性。通过构建有效的知识库&#xff0c;组织能够将孤立的知识和信息整合成为一个系统性的体&#xff0c;极大提高员工访问和利用这些信息的能力。这不仅简化了决策过程&#xff0c;还通过减少重复劳…...

通过F12收集的信息

按 F12 键打开浏览器的开发者工具&#xff08;DevTools&#xff09;可以获取部分操作系统和中间件信息&#xff0c;但能力有限。以下是具体说明&#xff1a; 一、通过 F12 收集的信息 1. 客户端操作系统信息 - Console 控制台 通过 JavaScript 直接获取客户端操作系统信息&am…...

用Python替代OpenMV IDE显示openmv USB 图像

原理是利用openmv的usb模仿串口&#xff0c;然后用Python代码打开串口接收 能替代openmv ide 跑48帧图像 Python端需要的依赖&#xff1a; 需要的是&#xff1a; from ultralytics import YOLO import cv2 import numpy as np from serial import Serial import time from co…...

c语言:编译和链接(详解)

前言 要将编译和链接&#xff0c;就不得不提及编译器是如何运作的&#xff0c;虽然这部分知识是针对于要创造编译器和创作语言的人所需要清楚的&#xff0c;但作为c语言的学习者也需要了解一下&#xff0c;修炼内功&#xff0c;尤其是对于想学习c的人而言。 编译器的运作过程…...

数据结构【单链表操作大全详解】【c语言版】(只有输入输出为了方便用的c++)

单链表操作的C/C实现详解 在数据结构中&#xff0c;单链表是一种非常基础且重要的数据结构。它由一系列节点组成&#xff0c;每个节点包含数据和指向下一个节点的指针。今天我们就来深入探讨用C/C实现的单链表及其各种操作。 一、单链表的定义 const int N 1e5; //单链表 t…...

leetcode27.删除有序数组中的重复项

目录 问题描述判题标准示例提示 具体思路思路一思路二 代码实现 问题描述 给你一个非严格递增排列的数组nums&#xff0c;请你原地删除重复出现的元素&#xff0c;使每个元素只出现一次&#xff0c;返回删除后数组的新长度。元素的相对顺序应该保持一致 。然后返回nums中唯一元…...

[c语言日寄]越界访问:意外的死循环

【作者主页】siy2333 【专栏介绍】⌈c语言日寄⌋&#xff1a;这是一个专注于C语言刷题的专栏&#xff0c;精选题目&#xff0c;搭配详细题解、拓展算法。从基础语法到复杂算法&#xff0c;题目涉及的知识点全面覆盖&#xff0c;助力你系统提升。无论你是初学者&#xff0c;还是…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

ElasticSearch搜索引擎之倒排索引及其底层算法

文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

android13 app的触摸问题定位分析流程

一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...

《Offer来了:Java面试核心知识点精讲》大纲

文章目录 一、《Offer来了:Java面试核心知识点精讲》的典型大纲框架Java基础并发编程JVM原理数据库与缓存分布式架构系统设计二、《Offer来了:Java面试核心知识点精讲(原理篇)》技术文章大纲核心主题:Java基础原理与面试高频考点Java虚拟机(JVM)原理Java并发编程原理Jav…...

前端工具库lodash与lodash-es区别详解

lodash 和 lodash-es 是同一工具库的两个不同版本&#xff0c;核心功能完全一致&#xff0c;主要区别在于模块化格式和优化方式&#xff0c;适合不同的开发环境。以下是详细对比&#xff1a; 1. 模块化格式 lodash 使用 CommonJS 模块格式&#xff08;require/module.exports&a…...

高保真组件库:开关

一:制作关状态 拖入一个矩形作为关闭的底色:44 x 22,填充灰色CCCCCC,圆角23,边框宽度0,文本为”关“,右对齐,边距2,2,6,2,文本颜色白色FFFFFF。 拖拽一个椭圆,尺寸18 x 18,边框为0。3. 全选转为动态面板状态1命名为”关“。 二:制作开状态 复制关状态并命名为”开…...

spring boot使用HttpServletResponse实现sse后端流式输出消息

1.以前只是看过SSE的相关文章&#xff0c;没有具体实践&#xff0c;这次接入AI大模型使用到了流式输出&#xff0c;涉及到给前端流式返回&#xff0c;所以记录一下。 2.resp要设置为text/event-stream resp.setContentType("text/event-stream"); resp.setCharacter…...