当前位置: 首页 > news >正文

IM 即时通讯系统-01-概览

前言

有时候希望有一个 IM 工具,比如日常聊天,或者接受报警信息。

其实主要是工作使用,如果是接收报警等场景,其实DD这种比较符合场景。

那么有没有必要再创造一个DD呢?

答案是如果处于个人的私有化使用,那么重新实现一个DD类似的 IM 还是必要的。

核心特性

公司的组织关系

通讯录

会话

IM

AI

实现的技术选型

long-query

定时轮训

ESS

WS

多端

平时工作的话,可以先做核心的实现:web。

保证服务端实现完成,客户端后期有精力拓展。

循序渐进的实现特性

场景:如果想实现一个报警使用的 IM,应该是先哪些能力?

为了实现一个具备报警功能的即时通讯(IM)系统能力,建议按照以下顺序分阶段实现核心特性。

这种顺序基于从核心需求到扩展需求、从基础功能到复杂功能、从单一场景到多场景覆盖的逻辑演进,确保每一步都能快速交付可用价值,同时降低开发风险。

阶段 1:基础报警与通知能力

  1. 文本消息发送与接收

    • 实现点对点消息、群组消息的发送和接收(WebSocket 或长轮询)。
    • 为什么:这是 IM 最基础的功能,也是报警通知的核心载体。
  2. 消息可靠性保证

    • 消息确认机制(如已读回执、送达回执)。
    • 为什么:报警场景要求消息必须可靠触达用户,避免遗漏。
  3. 权限控制与身份验证

    • 用户/角色权限管理(如限制报警发送权限、接收权限)。
    • 为什么:确保报警信息只能由授权用户发送和处理,避免误操作。

阶段 2:增强报警通知能力

  1. 富媒体消息支持

    • 支持图片、文件、链接、Markdown 格式(如代码片段、表格)。
    • 为什么:报警需要携带上下文(如日志、截图),富媒体能提升信息量。
  2. 通知渠道扩展

    • 集成短信、邮件、电话(通过第三方 API)。
    • 为什么:在用户未登录 IM 时,通过多通道确保报警触达。
  3. 优先级与提醒策略

    • 设置消息优先级(如紧急、高、中、低),不同优先级触发不同提醒方式(如强提醒、多次提醒)。
    • 为什么:区分报警严重性,避免普通消息干扰紧急处理。

阶段 3:协同处理与状态管理

  1. 群组协作能力

    • 创建报警处理群组,支持@提及、消息回复、历史消息查看。
    • 为什么:报警需要多人协作,群组能集中讨论和分配任务。
  2. 报警状态跟踪

    • 标记报警状态(如待处理、处理中、已解决),并支持添加备注。
    • 为什么:明确报警处理进度,避免重复处理或遗漏。
  3. 任务分配与跟进

    • 将报警转化为任务,指派给指定人员,并设置截止时间。
    • 为什么:明确责任人,提升处理效率。

阶段 4:自动化与集成

  1. 报警源集成

    • 对接监控系统(如 Prometheus、Zabbix)或第三方 API,自动生成报警消息。
    • 为什么:减少人工操作,实现报警自动化。
  2. 自动化工作流

    • 支持基于规则触发动作(如连续触发 3 次报警后自动升级通知或执行脚本)。
    • 为什么:提升报警响应速度,减少人工干预。
  3. 智能路由与分派

    • 根据报警类型、值班表、负载均衡自动分配处理人。
    • 为什么:避免人工分派延迟,优化资源分配。

阶段 5:数据分析与优化

  1. 历史记录与搜索

    • 存储报警消息历史,支持按关键词、时间范围搜索。
    • 为什么:便于事后复盘和审计。
  2. 统计与报表

    • 生成报警响应时间统计、处理成功率、高频报警类型分析。
    • 为什么:识别系统瓶颈,优化报警策略。
  3. 数据导出与开放 API

    • 提供数据导出功能(如 CSV/Excel),开放 API 供第三方系统集成。
    • 为什么:支持企业自定义分析或与现有系统打通。

阶段 6:高级功能与用户体验

  1. 多端同步与离线消息

    • 支持 Web、移动端(iOS/Android)、桌面客户端,同步消息状态。
    • 为什么:满足用户多场景使用需求。
  2. 界面优化与个性化

    • 自定义主题、通知免打扰模式、快捷回复模板。
    • 为什么:提升用户体验,降低使用疲劳。
  3. 安全增强

    • 端到端加密、消息审计日志、防篡改机制。
    • 为什么:满足企业级安全合规要求。

优先级逻辑总结

  1. 先核心后扩展:优先解决报警场景的刚需(可靠通知、多通道触达),再扩展协作、自动化等能力。
  2. 先闭环后优化:先让基础流程跑通(发送-接收-处理),再优化效率和体验。
  3. 先单点后生态:先聚焦独立功能,再逐步开放集成能力,构建生态。

通过这种分阶段实现,既能快速落地最小可用产品(MVP),又能持续迭代满足复杂需求,最终接近钉钉的企业级协同与报警处理能力。

相关文章:

IM 即时通讯系统-01-概览

前言 有时候希望有一个 IM 工具,比如日常聊天,或者接受报警信息。 其实主要是工作使用,如果是接收报警等场景,其实DD这种比较符合场景。 那么有没有必要再创造一个DD呢? 答案是如果处于个人的私有化使用&#xff0…...

【人工智能】 在本地运行 DeepSeek 模型:Ollama 安装指南

持续更新。。。。。。。。。。。。。。。 【人工智能】 在本地运行 DeepSeek 模型:Ollama 安装指南 安装 Ollama安装 DeepSeek 模型选择版本 ,版本越高,参数越多 性能越好使用 DeepSeek 模型 安装 Ollama 访问 Ollama 官网: 前往 https://oll…...

【Linux系统】信号:信号保存 / 信号处理、内核态 / 用户态、操作系统运行原理(中断)

理解Linux系统内进程信号的整个流程可分为: 信号产生 信号保存 信号处理 上篇文章重点讲解了 信号的产生,本文会讲解信号的保存和信号处理相关的概念和操作: 两种信号默认处理 1、信号处理之忽略 ::signal(2, SIG_IGN); // ignore: 忽略#…...

探索 Copilot:开启智能助手新时代

探索 Copilot:开启智能助手新时代 在当今数字化飞速发展的时代,人工智能(AI)正以前所未有的速度改变着我们的工作和生活方式。而 Copilot 作为一款强大的 AI 助手,凭借其多样的功能和高效的应用,正在成为众…...

解锁豆瓣高清海报(二) 使用 OpenCV 拼接和压缩

解锁豆瓣高清海报(二): 使用 OpenCV 拼接和压缩 脚本地址: 项目地址: Gazer PixelWeaver.py pixel_squeezer_cv2.py 前瞻 继上一篇“解锁豆瓣高清海报(一) 深度爬虫与requests进阶之路”成功爬取豆瓣电影海报之后,本文将介绍如何使用 OpenCV 对这些海报进行智…...

我用Ai学Android Jetpack Compose之Card

这篇学习一下Card。回答来自 通义千问。 我想学习Card,麻烦你介绍一下 当然可以!在 Jetpack Compose 中,Card 是一个非常常用的组件,用于创建带有阴影和圆角的卡片式布局。它可以帮助你轻松实现美观且一致的 UI 设计&#xff0c…...

NLP深度学习 DAY4:Word2Vec详解:两种模式(CBOW与Skip-gram)

用稀疏向量表示文本,即所谓的词袋模型在 NLP 有着悠久的历史。正如上文中介绍的,早在 2001年就开始使用密集向量表示词或词嵌入。Mikolov等人在2013年提出的创新技术是通过去除隐藏层,逼近目标,进而使这些单词嵌入的训练更加高效。…...

论文阅读(十):用可分解图模型模拟连锁不平衡

1.论文链接:Modeling Linkage Disequilibrium with Decomposable Graphical Models 摘要: 本章介绍了使用可分解的图形模型(DGMs)表示遗传数据,或连锁不平衡(LD),各种下游应用程序之…...

Python中容器类型的数据(上)

若我们想将多个数据打包并且统一管理,应该怎么办? Python内置的数据类型如序列(列表、元组等)、集合和字典等可以容纳多项数据,我们称它们为容器类型的数据。 序列 序列 (sequence) 是一种可迭代的、元素有序的容器类型的数据。 序列包括列表 (list)…...

PySPARK带多组参数和标签的SparkSQL批量数据导出到S3的程序

设计一个基于多个带标签SparkSQL模板作为配置文件和多组参数的PySPARK代码程序,实现根据不同的输入参数自动批量地将数据导出为Parquet、CSV和Excel文件到S3上,标签和多个参数(以“_”分割)为组成导出数据文件名,文件已…...

蓝桥杯备考:模拟算法之字符串展开

P1098 [NOIP 2007 提高组] 字符串的展开 - 洛谷 | 计算机科学教育新生态 #include <iostream> #include <cctype> #include <algorithm> using namespace std; int p1,p2,p3; string s,ret; void add(char left,char right) {string tmp;for(char ch left1;…...

使用LLaMA-Factory对AI进行认知的微调

使用LLaMA-Factory对AI进行认知的微调 引言1. 安装LLaMA-Factory1.1. 克隆仓库1.2. 创建虚拟环境1.3. 安装LLaMA-Factory1.4. 验证 2. 准备数据2.1. 创建数据集2.2. 更新数据集信息 3. 启动LLaMA-Factory4. 进行微调4.1. 设置模型4.2. 预览数据集4.3. 设置学习率等参数4.4. 预览…...

@Nullable 注解

文章目录 解释 Nullable 注解注解的组成部分&#xff1a;如何使用 Nullable 注解a. 标注方法返回值&#xff1a;b. 标注方法参数&#xff1a;c. 标注字段&#xff1a; 结合其他工具与 Nonnull 配合使用总结 Nullable 注解在 Java 中的使用场景通常与 Nullability&#xff08;空…...

Arduino大师练成手册 -- 控制 AS608 指纹识别模块

要在 Arduino 上控制 AS608 指纹识别模块&#xff0c;你可以按照以下步骤进行&#xff1a; 硬件连接 连接指纹模块&#xff1a;将 AS608 指纹模块与 Arduino 连接。通常&#xff0c;AS608 使用 UART 接口进行通信。你需要将 AS608 的 TX、RX、VCC 和 GND 引脚分别连接到 Ardu…...

Mask R-CNN与YOLOv8的区别

Mask R-CNN与YOLOv8虽然都是深度学习在计算机视觉领域的应用&#xff0c;但它们属于不同类型的视觉框架&#xff0c;各有特点和优势。 以下是关于 Mask R-CNN 和 YOLOv8 的详细对比分析&#xff0c;涵盖核心原理、性能差异、应用场景和选择建议&#xff1a; 1. 核心原理与功能…...

在Ubuntu上使用Docker部署DeepSeek

在Ubuntu上使用Docker部署DeepSeek&#xff0c;并确保其可以访问公网网址进行对话&#xff0c;可以按照以下步骤进行&#xff1a; 一、安装Docker 更新Ubuntu的软件包索引&#xff1a; sudo apt-get update安装必要的软件包&#xff0c;这些软件包允许apt通过HTTPS使用存储库…...

MySQL的覆盖索引

MySQL的覆盖索引 前言 当一个索引包含了查询所需的全部字段时&#xff0c;就可以提高查询效率&#xff0c;这样的索引又被称之为覆盖索引。 以MySQL常见的三种存储引擎为例&#xff1a;InnoDB、MyISAM、Memory&#xff0c;对于覆盖索引提高查询效率的方式均不同&#xff0c;…...

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.12 连续数组:为什么contiguous这么重要?

2.12 连续数组&#xff1a;为什么contiguous这么重要&#xff1f; 目录 #mermaid-svg-wxhozKbHdFIldAkj {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-wxhozKbHdFIldAkj .error-icon{fill:#552222;}#mermaid-svg-…...

在React中使用redux

一、首先安装两个插件 1.Redux Toolkit 2.react-redux 第一步&#xff1a;创建模块counterStore 第二步&#xff1a;在store的入口文件进行子模块的导入组合 第三步&#xff1a;在index.js中进行store的全局注入 第四步&#xff1a;在组件中进行使用 第五步&#xff1a;在组件中…...

lstm预测

import numpy as np import pandas as pd import tensorflow as tf import math import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler from keras.layers import LSTM,Activation,Dense,Dropout# 时间序列数据转换为监督学习的格式 def creatXY(d…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

STM32HAL库USART源代码解析及应用

STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...

基于Springboot+Vue的办公管理系统

角色&#xff1a; 管理员、员工 技术&#xff1a; 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能&#xff1a; 该办公管理系统是一个综合性的企业内部管理平台&#xff0c;旨在提升企业运营效率和员工管理水…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...

解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用

在工业制造领域&#xff0c;无损检测&#xff08;NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统&#xff0c;以非接触式光学麦克风技术为核心&#xff0c;打破传统检测瓶颈&#xff0c;为半导体、航空航天、汽车制造等行业提供了高灵敏…...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用&#xff0c;用户可以通过网页界面上传黑白视频&#xff0c;系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观&#xff0c;不需要了解技术细节。 效果图 ​二、实现思路 总体思路&#xff1a; 用户通过Gradio界面上…...