DeepSeek-R1 论文. Reinforcement Learning 通过强化学习激励大型语言模型的推理能力
论文链接:
[2501.12948] DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
实在太长,自行扔到 Model 里,去翻译去提问吧。
工作原理:
主要技术,就是训练出一些专有用途小模型,来帮助大模型训练。 主要技术:
1. 强化学习 (RL)
核心是强化学习技术,像训练小狗一样,当模型做出正确的推理步骤或得到正确的结果时,就会获得奖励,给 <think> </think> 标记;否则受到惩罚。 通过不断地学习和调整,模型的推理能力就越来越强。 强化学习过程分为多个阶段,包括直接在基础模型上进行强化学习 (DeepSeek-R1-Zero),以及在加入少量人工整理的数据后进行强化学习。
2. 冷启动数据
为了让模型更“听话”,在 DeepSeek-R1-Zero 的基础上加入了一些人工整理的数据,并进行多阶段训练。 这些数据可以帮助模型更好地理解人类的语言和思维方式,从而提高推理的准确性和可读性。
3. 多阶段训练
训练过程分为多个阶段,包括冷启动阶段、推理导向的强化学习阶段、拒绝采样和监督微调阶段,以及针对所有场景的强化学习阶段。 每个阶段都有不同的目标和侧重点,从而保证模型的推理能力和泛化能力都能得到提升。
4. 知识蒸馏
DeepSeek-R1 生成大量的训练数据,然后用这些数据来训练 smaller models。可以显著提高 smaller models 的推理性能,降低计算成本。
相关文章:
DeepSeek-R1 论文. Reinforcement Learning 通过强化学习激励大型语言模型的推理能力
论文链接: [2501.12948] DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning 实在太长,自行扔到 Model 里,去翻译去提问吧。 工作原理: 主要技术,就是训练出一些专有用途小模型&…...
DOM 操作入门:HTML 元素操作与页面事件处理
DOM 操作入门:HTML 元素操作与页面事件处理 DOM 操作入门:HTML 元素操作与页面事件处理什么是 DOM?1. 如何操作 HTML 元素?1.1 使用 `document.getElementById()` 获取单个元素1.2 使用 `document.querySelector()` 和 `document.querySelectorAll()` 获取多个元素1.3 创建…...
使用 HTTP::Server::Simple 实现轻量级 HTTP 服务器
在Perl中,HTTP::Server::Simple 模块提供了一种轻量级的方式来实现HTTP服务器。该模块简单易用,适合快速开发和测试HTTP服务。本文将详细介绍如何使用 HTTP::Server::Simple 模块创建和配置一个轻量级HTTP服务器。 安装 HTTP::Server::Simple 首先&…...
C++滑动窗口技术深度解析:核心原理、高效实现与高阶应用实践
目录 一、滑动窗口的核心原理 二、滑动窗口的两种类型 1. 固定大小的窗口 2. 可变大小的窗口 三、实现细节与关键点 1. 窗口的初始化 2. 窗口的移动策略 3. 结果的更新时机 四、经典问题与代码示例 示例 1:和 ≥ target 的最短子数组(可变窗口…...
基于构件的软件开发方法
摘要: 本人在2023年1月参与广东某公司委托我司开发的“虚拟电厂”项目,主要负责整体架构设计和中间件的选型,该项目为新型电力存储、电力调度、能源交易提供一整套的软件系统,包括设备接入、负载预测、邀约竞价、用户设备调控等功能。本项目以“虚拟电厂”项目为例,讨论基…...
网站快速收录:如何设置robots.txt文件?
本文转自:百万收录网 原文链接:https://www.baiwanshoulu.com/34.html 为了网站快速收录而合理设置robots.txt文件,需要遵循一定的规则和最佳实践。robots.txt文件是一个纯文本文件,它告诉搜索引擎爬虫哪些页面可以访问ÿ…...

OpenGL学习笔记(六):Transformations 变换(变换矩阵、坐标系统、GLM库应用)
文章目录 向量变换使用GLM变换(缩放、旋转、位移)将变换矩阵传递给着色器坐标系统与MVP矩阵三维变换绘制3D立方体 & 深度测试(Z-buffer)练习1——更多立方体 现在我们已经知道了如何创建一个物体、着色、加入纹理。但它们都还…...

8.攻防世界Web_php_wrong_nginx_config
进入题目页面如下 尝试弱口令密码登录 一直显示网站建设中,尝试无果,查看源码也没有什么特别漏洞存在 用Kali中的dirsearch扫描根目录试试 命令: dirsearch -u http://61.147.171.105:53736/ -e* 登录文件便是刚才登录的界面打开robots.txt…...

【优先算法】专题——位运算
在讲解位运算之前我们来总结一下常见的位运算 一、常见的位运算 1.基础为运算 << &:有0就是0 >> |:有1就是1 ~ ^:相同为0,相异位1 /无进位相加 2.给一个数 n,确定它的二进制表示…...

qt.qpa.plugin: Could not find the Qt platform plugin “dxcb“ in ““
个人博客地址:qt.qpa.plugin: Could not find the Qt platform plugin "dxcb" in "" | 一张假钞的真实世界 我遇到的场景是,在Deepin系统终端中运行PySide应用时,没有错误提示,但在VS Code中运行时ÿ…...

1-刷力扣问题记录
25.1.19 1.size()和.length()有什么区别 2.result.push_back({nums[i], nums[left], nums[right]});为什么用大括号? 使用大括号 {} 是 C11 引入的 初始化列表 语法,它允许我们在构造或初始化对象时直接传入一组值。大括号的使用在许多情况下都能让代码…...

物联网 STM32【源代码形式-使用以太网】连接OneNet IOT从云产品开发到底层MQTT实现,APP控制 【保姆级零基础搭建】
物联网(IoT)是指通过各种信息传感器、射频识别技术、全球定位系统、红外感应器等装置与技术,实时采集并连接任何需要监控、连接、互动的物体或过程,实现对物品和过程的智能化感知、识别和管理。物联网的核心功能包括数据采集与监…...
【单层神经网络】基于MXNet的线性回归实现(底层实现)
写在前面 基于亚马逊的MXNet库本专栏是对李沐博士的《动手学深度学习》的笔记,仅用于分享个人学习思考以下是本专栏所需的环境(放进一个environment.yml,然后用conda虚拟环境统一配置即可)刚开始先从普通的寻优算法开始ÿ…...

unity中的动画混合树
为什么需要动画混合树,动画混合树有什么作用? 在Unity中,动画混合树(Animation Blend Tree)是一种用于管理和混合多个动画状态的工具,包括1D和2D两种类型,以下是其作用及使用必要性的介绍&…...
《基于deepseek R1开源大模型的电子数据取证技术发展研究》
《基于deepseek R1开源大模型的电子数据取证技术发展研究》 摘要 本文探讨了基于deepseek R1开源大模型的电子数据取证技术发展前景。随着人工智能技术的快速发展,AI大模型在电子数据取证领域的应用潜力日益凸显。本研究首先分析了电子数据取证的现状和挑战…...

Potplayer常用快捷键
Potplayer是一个非常好用的播放器,功能强大 功能快捷键播放/暂停空格键退出Esc下一帧F上一帧D快进10秒→快退10秒←快进30秒Ctrl →快退30秒Ctrl ←快进1分钟Alt →快退1分钟Alt ←增加播放速度C减少播放速度X恢复正常速度Z增加音量↑减少音量↓静音M显示/隐藏字幕Ctrl A…...

C++ Primer 自定义数据结构
欢迎阅读我的 【CPrimer】专栏 专栏简介:本专栏主要面向C初学者,解释C的一些基本概念和基础语言特性,涉及C标准库的用法,面向对象特性,泛型特性高级用法。通过使用标准库中定义的抽象设施,使你更加适应高级…...

35.Word:公积金管理中心文员小谢【37】
目录 Word1.docx Word2.docx Word2.docx 注意本套题还是与上一套存在不同之处 Word1.docx 布局样式的应用设计页眉页脚位置在水平/垂直方向上均相对于外边距居中排列:格式→大小对话框→位置→水平/垂直 按下表所列要求将原文中的手动纯文本编号分别替换…...

北京钟鼓楼:立春“鞭春牛”,钟鼓迎春来
仁风导和气,勾芒御昊春。“钟鼓迎春”立春鞭春牛民俗体验活动于立春当日在北京钟鼓楼隆重举办。此次活动由北京市钟鼓楼文物保管所主办,京睿文(北京)文化科技有限公司承办,通过礼官报春、击鼓鸣钟、春娃喊春、中国时间文化角色巡游、鞭春牛等一系列精彩的活动环节,为观众呈现了…...

股票入门知识
股票入门(更适合中国宝宝体制) 股市基础知识 本文介绍了股票的基础知识,股票的分类,各板块发行上市条件,股票代码,交易时间,交易规则,炒股术语,影响股价的因素…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...

简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...

使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...

分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...