pytorch基于GloVe实现的词嵌入
PyTorch 实现 GloVe(Global Vectors for Word Representation) 的完整代码,使用 中文语料 进行训练,包括 共现矩阵构建、模型定义、训练和测试。
1. GloVe 介绍
基于词的共现信息(不像 Word2Vec 使用滑动窗口预测)
适合较大规模的数据(比 Word2Vec 更稳定)
学习出的词向量能捕捉语义信息(如类比关系)
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import jieba
from collections import Counter
from scipy.sparse import coo_matrix# ========== 1. 数据预处理 ==========
corpus = ["我们 喜欢 深度 学习","自然 语言 处理 是 有趣 的","人工智能 改变 了 世界","深度 学习 是 人工智能 的 重要 组成部分"
]# 分词
tokenized_corpus = [list(jieba.cut(sentence)) for sentence in corpus]
vocab = set(word for sentence in tokenized_corpus for word in sentence)
word2idx = {word: idx for idx, word in enumerate(vocab)}
idx2word = {idx: word for word, idx in word2idx.items()}# 计算共现矩阵
window_size = 2
co_occurrence = Counter()for sentence in tokenized_corpus:indices = [word2idx[word] for word in sentence]for center_idx in range(len(indices)):center_word = indices[center_idx]for offset in range(-window_size, window_size + 1):context_idx = center_idx + offsetif 0 <= context_idx < len(indices) and context_idx != center_idx:context_word = indices[context_idx]co_occurrence[(center_word, context_word)] += 1# 转换为稀疏矩阵
rows, cols, values = zip(*[(c[0], c[1], v) for c, v in co_occurrence.items()])
X = coo_matrix((values, (rows, cols)), shape=(len(vocab), len(vocab)))# ========== 2. 定义 GloVe 模型 ==========
class GloVe(nn.Module):def __init__(self, vocab_size, embedding_dim):super(GloVe, self).__init__()self.w_embeddings = nn.Embedding(vocab_size, embedding_dim) # 中心词嵌入self.c_embeddings = nn.Embedding(vocab_size, embedding_dim) # 上下文词嵌入self.w_bias = nn.Embedding(vocab_size, 1) # 中心词偏置self.c_bias = nn.Embedding(vocab_size, 1) # 上下文词偏置nn.init.xavier_uniform_(self.w_embeddings.weight)nn.init.xavier_uniform_(self.c_embeddings.weight)def forward(self, center, context, co_occur):w_emb = self.w_embeddings(center)c_emb = self.c_embeddings(context)w_bias = self.w_bias(center).squeeze()c_bias = self.c_bias(context).squeeze()dot_product = (w_emb * c_emb).sum(dim=1)loss = (dot_product + w_bias + c_bias - torch.log(co_occur + 1e-8)) ** 2return loss.mean()# 初始化模型
embedding_dim = 10
model = GloVe(len(vocab), embedding_dim)# ========== 3. 训练 GloVe ==========
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.01)
num_epochs = 100# 转换数据
co_occurrence_tensor = torch.tensor(X.data, dtype=torch.float)
pairs = list(zip(X.row, X.col, co_occurrence_tensor))for epoch in range(num_epochs):total_loss = 0np.random.shuffle(pairs)for center, context, co_occur in pairs:optimizer.zero_grad()loss = model(torch.tensor([center], dtype=torch.long),torch.tensor([context], dtype=torch.long),torch.tensor([co_occur], dtype=torch.float) # 修正数据类型)loss.backward()optimizer.step()total_loss += loss.item()if (epoch + 1) % 10 == 0:print(f"Epoch [{epoch + 1}/{num_epochs}], Loss: {total_loss:.4f}")# ========== 4. 获取词向量 ==========
word_vectors = model.w_embeddings.weight.data.numpy()# ========== 5. 计算相似度 ==========
def most_similar(word, top_n=3):if word not in word2idx:return "单词不在词汇表中"word_vec = word_vectors[word2idx[word]].reshape(1, -1)similarities = np.dot(word_vectors, word_vec.T).squeeze()similar_idx = similarities.argsort()[::-1][1:top_n + 1]return [(idx2word[idx], similarities[idx]) for idx in similar_idx]# 测试
test_words = ["深度", "学习", "人工智能"]
for word in test_words:print(f"【{word}】的相似单词:", most_similar(word))
数据预处理
- 分词(使用
jieba.cut()
) - 构建共现矩阵(计算窗口内的单词共现频率)
- 使用稀疏矩阵存储(提高计算效率)
GloVe 模型
Embedding
层 训练词向量(中心词和上下文词分开)Bias
变量 用于调整预测值- 损失函数 最小化
log(共现次数)
与词向量点积的差值
计算词向量相似度
- 使用
cosine similarity
- 找出
top_n
最相似的单词
相关文章:
pytorch基于GloVe实现的词嵌入
PyTorch 实现 GloVe(Global Vectors for Word Representation) 的完整代码,使用 中文语料 进行训练,包括 共现矩阵构建、模型定义、训练和测试。 1. GloVe 介绍 基于词的共现信息(不像 Word2Vec 使用滑动窗口预测&…...

SpringCloud篇 微服务架构
1. 工程架构介绍 1.1 两种工程架构模型的特征 1.1.1 单体架构 上面这张图展示了单体架构(Monolithic Architecture)的基本组成和工作原理。单体架构是一种传统的软件架构模式,其中所有的功能都被打包在一个单一的、紧密耦合的应用程序中。 …...
背包问题和单调栈
背包问题(动态规划) 动态五步曲 dp数组及下标索引的含义递推公式dp数组如何初始化遍历顺序打印dp数组 01背包:n种物品,有一个,二维数组遍历顺序可以颠倒,(滚动数组)一维数组遍历顺序不可颠倒…...
Java | CompletableFuture详解
关注:CodingTechWork CompletableFuture 概述 介绍 CompletableFuture是 Java 8 引入的一个非常强大的类,属于 java.util.concurrent 包。它是用于异步编程的一个工具,可以帮助我们更方便地处理并发任务。与传统的线程池或 Future 对比&…...

【背包问题】二维费用的背包问题
目录 二维费用的背包问题详解 总结: 空间优化: 1. 状态定义 2. 状态转移方程 3. 初始化 4. 遍历顺序 5. 时间复杂度 例题 1,一和零 2,盈利计划 二维费用的背包问题详解 前面讲到的01背包中,对物品的限定条件…...

Golang 并发机制-5:详解syn包同步原语
并发性是现代软件开发的一个基本方面,Go(也称为Golang)为并发编程提供了一组健壮的工具。Go语言中用于管理并发性的重要包之一是“sync”包。在本文中,我们将概述“sync”包,并深入研究其最重要的同步原语之一…...

实验六 项目二 简易信号发生器的设计与实现 (HEU)
声明:代码部分使用了AI工具 实验六 综合考核 Quartus 18.0 FPGA 5CSXFC6D6F31C6N 1. 实验项目 要求利用硬件描述语言Verilog(或VHDL)、图形描述方式、IP核,结合数字系统设计方法,在Quartus开发环境下ÿ…...

如何用微信小程序写春联
生活没有模板,只需心灯一盏。 如果笑能让你释然,那就开怀一笑;如果哭能让你减压,那就让泪水流下来。如果沉默是金,那就不用解释;如果放下能更好地前行,就别再扛着。 一、引入 Vant UI 1、通过 npm 安装 npm i @vant/weapp -S --production 2、修改 app.json …...

LabVIEW无人机航线控制系统
介绍了一种无人机航线控制系统,该系统利用LabVIEW软件与MPU6050九轴传感器相结合,实现无人机飞行高度、速度、俯仰角和滚动角的实时监控。系统通过虚拟仪器技术,有效实现了数据的采集、处理及回放,极大提高了无人机航线的控制精度…...
C++哈希表深度解析:从原理到实现,全面掌握高效键值对存储
目录 一、核心组件与原理 1. 哈希函数(Hash Function) 2. 冲突解决(Collision Resolution) 3. 负载因子(Load Factor)与扩容 二、C实现:std::unordered_map 1. 模板参数 2. 关键操作与复…...
Vue.js组件开发-实现字母向上浮动
使用Vue实现字母向上浮动的效果 实现步骤 创建Vue项目:使用Vue CLI来创建一个新的Vue项目。定义组件结构:在组件的模板中,定义包含字母的元素。添加样式:使用CSS动画来实现字母向上浮动的效果。绑定动画类:在Vue组件…...

自研有限元软件与ANSYS精度对比-Bar2D2Node二维杆单元模型-四连杆实例
目录 1、四连杆工程实例以及手算求解 2、四连杆的自研有限元软件求解 2.1、选择单元类型 2.2、导入四连杆工程 2.3、节点坐标定义 2.4、单元连接关系、材料定义 2.5、约束定义 2.6、外载定义 2.7、矩阵求解 2.8、变形云图展示 2.9、节点位移 2.10、单元应力 2.11、…...

04树 + 堆 + 优先队列 + 图(D1_树(D11_伸展树))
目录 一、基本介绍 二、伸展操作 1. 左右情况的伸展 2. 左左情况的伸展 3. 右左情况的伸展 4. 右右情况的伸展 三、其它操作 1. 插入 2. 删除 四、代码实现 一、基本介绍 伸展树是一种二叉搜索树,伸展树也是一种平衡树,不过伸展树并不像AVL树那…...

c语言练习题【数据类型、递归、双向链表快速排序】
练习1:数据类型 请写出以下几个数据的数据类型 整数 a a 的地址 存放a的数组 b 存放a的地址的数组 b的地址 c的地址 指向 printf 函数的指针 d 存放 d的数组 整数 a 的类型 数据类型是 int a 的地址 数据类型是 int*(指向 int 类型的指针) …...

SliverAppBar的功能和用法
文章目录 1 概念介绍2 使用方法3 示例代码 我们在上一章回中介绍了SliverGrid组件相关的内容,本章回中将介绍SliverAppBar组件.闲话休提,让我们一起Talk Flutter吧。 1 概念介绍 我们在本章回中介绍的SliverAppBar和普通的AppBar类似,它们的…...
五、定时器实现呼吸灯
5.1 定时器与计数器简介 定时器是一种通过对内部时钟脉冲计数来测量时间间隔的模块。它的核心是一个递增或递减的寄存器(计数器值)。如果系统时钟为 1 MHz,定时器每 1 μs 计数一次。 计数器是一种对外部事件(如脉冲信号ÿ…...

Elasticsearch的索引生命周期管理
目录 说明零、参考一、ILM的基本概念二、ILM的实践步骤Elasticsearch ILM策略中的“最小年龄”是如何计算的?如何监控和调整Elasticsearch ILM策略的性能? 1. **监控性能**使用/_cat/thread_pool API基本请求格式请求特定线程池的信息响应内容 2. **调整…...

【大模型理论篇】最近大火的DeepSeek-R1初探系列1
1. 背景介绍 这一整个春节,被DeepSeek-R1刷屏。各种铺天盖地的新闻以及老板发的相关信息,着实感受到DeepSeek-R1在国外出圈的震撼。 DeepSeek推出了新的推理模型:DeepSeek-R1-Zero 和 DeepSeek-R1。DeepSeek-R1-Zero 是一个在没有经过监督微调…...

【数据结构】(4) 线性表 List
一、什么是线性表 线性表就是 n 个相同类型元素的有限序列,每一个元素只有一个前驱和后继(除了第一个和最后一个元素)。 数据结构中,常见的线性表有:顺序表、链表、栈、队列。 二、什么是 List List 是 Java 中的线性…...
【C++ STL】vector容器详解:从入门到精通
【C STL】vector容器详解:从入门到精通 摘要:本文深入讲解C STL中vector容器的使用方法,涵盖常用函数、代码示例及注意事项,助你快速掌握动态数组的核心操作! 一、vector概述 vector是C标准模板库(STL&am…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...

R 语言科研绘图第 55 期 --- 网络图-聚类
在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。 为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式: R 语言科研绘图模板 --- sciRplothttps://mp.…...

elementUI点击浏览table所选行数据查看文档
项目场景: table按照要求特定的数据变成按钮可以点击 解决方案: <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...
上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式
简介 在我的 QT/C 开发工作中,合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式:工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...

使用SSE解决获取状态不一致问题
使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件,这个上传文件是整体功能的一部分,文件在上传的过程中…...