文献学习笔记:中风醒脑液(FYTF-919)临床试验解读:有效还是无效?
【中风醒脑液(FYTF-919)临床试验解读:有效还是无效?】
在发表于 The Lancet (2024 年 11 月 30 日,第 404 卷)的临床研究《Traditional Chinese medicine FYTF-919 (Zhongfeng Xingnao oral prescription) for the treatment of acute intracerebral haemorrhage: a multicentre, randomised, placebocontrolled, double-blind, clinical trial》中,中药 FYTF-919 (中风醒脑口服剂)被试图用于治疗急性内原性脑出血 (ICH),但结果展示该药物在功能恢复和生存率方面并没有显著优势。本文主要总结该文献的行文思路、主要观点和结论,并探讨本研究选用完全无药理作用的安慰剂作为对照组的原因和意义。
一、文献主要行文思路
本研究采用了 多中心、随机对照、雙曝、安慰剂对照的临床试验设计,重点在于评价 FYTF-919 在中微重度 ICH 患者中的安全性和效能性。文献大致包括以下两大步骤:
- 背景介绍:分析 ICH 现有治疗方式的限制,与中药在 ICH 中的使用现状和存在的问题。
- 研究设计:描述试验的随机化过程、对照组设计以及评价方法。
- 结果:在研究随访期结束时使用 修正 Rankin 量表 (mRS) 标准化评分,评估 90 天的功能恢复状况。
- 讨论与结论:观察 FYTF-919 是否有效,分析文献结果对中药在 ICH 治疗中作用的意义。
二、文献主要观点和结论
1. 主要结果展示
- FYTF-919 在 90 天时 对功能恢复无显著优势:修正 Rankin 量表评分在 FYTF-919 组和安慰剂组中均为 0.44,没有给出统计实证上的显著差异 (p=0.63)。
- 死亡率和重大不良反应相似:FYTF-919 组与安慰剂组在死亡率 (11.8% vs 11.3%) 和重大不良反应 (41.5% vs 43.3%) 方面没有统计实证上的差异。
- FYTF-919 组与安慰剂组的 mRS 评分分布及统计分析
mRS 评分分布 显示,FYTF-919 组与安慰剂组在 功能恢复较好(mRS 0-2) 的患者比例相似(FYTF-919 组 42.7%,安慰剂组 42.1%)。
功能较差或死亡(mRS 5-6) 的比例,FYTF-919 组为 16.0%,安慰剂组为 17.4%。
统计分析 显示,调整后 常见比值比 (common odds ratio) 为 0.99(95% CI 0.84-1.18,p=0.94),表明 FYTF-919 组与安慰剂组在功能恢复和预后方面没有显著差异。
三、安慰剂的选择和意义
本研究使用的安慰剂全然无药理作用,主要包含大豆肽、黑糖汁、食用香精等。该选择为确保研究结果的应用性和科学性,避免安慰剂本身对 ICH 过程发生不应有的作用,以确保研究结果的五素性。
为什么选择“纯安慰剂”而非标准治疗?
- FYTF-919 作为新药尚未被证明有效,研究的目标是验证其相对于无治疗的效果,而非与已知有效药物对比。
- ICH 目前缺乏特定的标准药物干预,主要治疗措施是控制血压、管理颅内压和提供支持性护理,因此选择完全无药理作用的安慰剂可以更准确地衡量 FYTF-919 的真实疗效。
- 避免额外药物影响实验结果,如果安慰剂组接受某种已知有效的药物,可能会掩盖 FYTF-919 的潜在效果,使结果解读变得复杂。
- 确保研究的科学严谨性,只有使用完全无药理作用的安慰剂,才能精确评估 FYTF-919 是否具有独立的临床价值,符合随机对照试验 (RCT) 的设计原则。
相关文章:

文献学习笔记:中风醒脑液(FYTF-919)临床试验解读:有效还是无效?
【中风醒脑液(FYTF-919)临床试验解读:有效还是无效?】 在发表于 The Lancet (2024 年 11 月 30 日,第 404 卷)的临床研究《Traditional Chinese medicine FYTF-919 (Zhongfeng Xingnao oral pr…...

Chapter2 Amplifiers, Source followers Cascodes
Chapter2 Amplifiers, Source followers & Cascodes MOS单管根据输入输出, 可分为CS放大器, source follower和cascode 三种结构. Single-transistor amplifiers 这一章学习模拟电路基本单元-单管放大器 单管运放由Common-Source加上DC电流源组成. Avgm*Rds, gm和rds和…...
从0开始使用面对对象C语言搭建一个基于OLED的图形显示框架(绘图设备封装)
目录 图像层的底层抽象——绘图设备抽象 如何抽象一个绘图设备? 桥接绘图设备,特化为OLED设备 题外话:设备的属性,与设计一个相似函数化简的通用办法 使用函数指针来操作设备 总结一下 图像层的底层抽象——绘图设备抽象 在…...

Android学习19 -- 手搓App
1 前言 之前工作中,很多时候要搞一个简单的app去验证底层功能,Android studio又过于重型,之前用gradle,被版本匹配和下载外网包折腾的堪称噩梦。所以搞app都只有找应用的同事帮忙。一直想知道一些简单的app怎么能手搓一下&#x…...
pytorch基于GloVe实现的词嵌入
PyTorch 实现 GloVe(Global Vectors for Word Representation) 的完整代码,使用 中文语料 进行训练,包括 共现矩阵构建、模型定义、训练和测试。 1. GloVe 介绍 基于词的共现信息(不像 Word2Vec 使用滑动窗口预测&…...

SpringCloud篇 微服务架构
1. 工程架构介绍 1.1 两种工程架构模型的特征 1.1.1 单体架构 上面这张图展示了单体架构(Monolithic Architecture)的基本组成和工作原理。单体架构是一种传统的软件架构模式,其中所有的功能都被打包在一个单一的、紧密耦合的应用程序中。 …...
背包问题和单调栈
背包问题(动态规划) 动态五步曲 dp数组及下标索引的含义递推公式dp数组如何初始化遍历顺序打印dp数组 01背包:n种物品,有一个,二维数组遍历顺序可以颠倒,(滚动数组)一维数组遍历顺序不可颠倒…...
Java | CompletableFuture详解
关注:CodingTechWork CompletableFuture 概述 介绍 CompletableFuture是 Java 8 引入的一个非常强大的类,属于 java.util.concurrent 包。它是用于异步编程的一个工具,可以帮助我们更方便地处理并发任务。与传统的线程池或 Future 对比&…...

【背包问题】二维费用的背包问题
目录 二维费用的背包问题详解 总结: 空间优化: 1. 状态定义 2. 状态转移方程 3. 初始化 4. 遍历顺序 5. 时间复杂度 例题 1,一和零 2,盈利计划 二维费用的背包问题详解 前面讲到的01背包中,对物品的限定条件…...

Golang 并发机制-5:详解syn包同步原语
并发性是现代软件开发的一个基本方面,Go(也称为Golang)为并发编程提供了一组健壮的工具。Go语言中用于管理并发性的重要包之一是“sync”包。在本文中,我们将概述“sync”包,并深入研究其最重要的同步原语之一…...

实验六 项目二 简易信号发生器的设计与实现 (HEU)
声明:代码部分使用了AI工具 实验六 综合考核 Quartus 18.0 FPGA 5CSXFC6D6F31C6N 1. 实验项目 要求利用硬件描述语言Verilog(或VHDL)、图形描述方式、IP核,结合数字系统设计方法,在Quartus开发环境下ÿ…...

如何用微信小程序写春联
生活没有模板,只需心灯一盏。 如果笑能让你释然,那就开怀一笑;如果哭能让你减压,那就让泪水流下来。如果沉默是金,那就不用解释;如果放下能更好地前行,就别再扛着。 一、引入 Vant UI 1、通过 npm 安装 npm i @vant/weapp -S --production 2、修改 app.json …...

LabVIEW无人机航线控制系统
介绍了一种无人机航线控制系统,该系统利用LabVIEW软件与MPU6050九轴传感器相结合,实现无人机飞行高度、速度、俯仰角和滚动角的实时监控。系统通过虚拟仪器技术,有效实现了数据的采集、处理及回放,极大提高了无人机航线的控制精度…...
C++哈希表深度解析:从原理到实现,全面掌握高效键值对存储
目录 一、核心组件与原理 1. 哈希函数(Hash Function) 2. 冲突解决(Collision Resolution) 3. 负载因子(Load Factor)与扩容 二、C实现:std::unordered_map 1. 模板参数 2. 关键操作与复…...
Vue.js组件开发-实现字母向上浮动
使用Vue实现字母向上浮动的效果 实现步骤 创建Vue项目:使用Vue CLI来创建一个新的Vue项目。定义组件结构:在组件的模板中,定义包含字母的元素。添加样式:使用CSS动画来实现字母向上浮动的效果。绑定动画类:在Vue组件…...

自研有限元软件与ANSYS精度对比-Bar2D2Node二维杆单元模型-四连杆实例
目录 1、四连杆工程实例以及手算求解 2、四连杆的自研有限元软件求解 2.1、选择单元类型 2.2、导入四连杆工程 2.3、节点坐标定义 2.4、单元连接关系、材料定义 2.5、约束定义 2.6、外载定义 2.7、矩阵求解 2.8、变形云图展示 2.9、节点位移 2.10、单元应力 2.11、…...

04树 + 堆 + 优先队列 + 图(D1_树(D11_伸展树))
目录 一、基本介绍 二、伸展操作 1. 左右情况的伸展 2. 左左情况的伸展 3. 右左情况的伸展 4. 右右情况的伸展 三、其它操作 1. 插入 2. 删除 四、代码实现 一、基本介绍 伸展树是一种二叉搜索树,伸展树也是一种平衡树,不过伸展树并不像AVL树那…...

c语言练习题【数据类型、递归、双向链表快速排序】
练习1:数据类型 请写出以下几个数据的数据类型 整数 a a 的地址 存放a的数组 b 存放a的地址的数组 b的地址 c的地址 指向 printf 函数的指针 d 存放 d的数组 整数 a 的类型 数据类型是 int a 的地址 数据类型是 int*(指向 int 类型的指针) …...

SliverAppBar的功能和用法
文章目录 1 概念介绍2 使用方法3 示例代码 我们在上一章回中介绍了SliverGrid组件相关的内容,本章回中将介绍SliverAppBar组件.闲话休提,让我们一起Talk Flutter吧。 1 概念介绍 我们在本章回中介绍的SliverAppBar和普通的AppBar类似,它们的…...
五、定时器实现呼吸灯
5.1 定时器与计数器简介 定时器是一种通过对内部时钟脉冲计数来测量时间间隔的模块。它的核心是一个递增或递减的寄存器(计数器值)。如果系统时钟为 1 MHz,定时器每 1 μs 计数一次。 计数器是一种对外部事件(如脉冲信号ÿ…...

XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...

【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...
Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换
目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...

STM32---外部32.768K晶振(LSE)无法起振问题
晶振是否起振主要就检查两个1、晶振与MCU是否兼容;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容(CL)与匹配电容(CL1、CL2)的关系 2. 如何选择 CL1 和 CL…...