当前位置: 首页 > news >正文

二维前缀和:高效求解矩阵区域和问题

在处理二维矩阵时,频繁计算某一子矩阵的和是一个常见的操作。传统的做法是直接遍历该子矩阵,时间复杂度较高。当矩阵非常大且有大量的查询时,直接计算将变得低效。为了提高效率,我们可以通过 二维前缀和 技巧在常数时间内解决这个问题。

本文将通过一个具体的 Java 实现,介绍如何使用二维前缀和优化子矩阵求和问题。

关键是二维前缀和数组的构造,以及求解区域和的代码部分

测试链接:https://leetcode.cn/problems/range-sum-query-2d-immutable/

一、前缀和的概念

前缀和是解决区间和问题的经典技巧。在一维数组中,前缀和数组 prefixSum 用于存储从数组开头到当前位置的累加和,这样我们可以在 O(1) 时间内查询任意区间 [l, r] 的和。

二维前缀和的思想类似,它在二维矩阵上扩展了前缀和的概念。给定一个 m x n 的矩阵 matrix,二维前缀和数组 sum 中的元素 sum[i][j] 表示从左上角 (0, 0)(i-1, j-1) 的所有矩阵元素的和。通过构造这个前缀和数组,我们能够在常数时间内查询任意子矩阵的元素和。

二、二维前缀和的计算

2.1 二维前缀和的构建

对于一个 m x n 的矩阵 matrix,我们定义一个同样大小的前缀和数组 sum,其中 sum[i][j] 表示从 (0, 0)(i-1, j-1) 的矩阵元素和。构造 sum[i][j] 的公式如下:

sum[i][j] = matrix[i-1][j-1] + sum[i-1][j] + sum[i][j-1] - sum[i-1][j-1]
  • matrix[i-1][j-1]:当前矩阵元素。
  • sum[i-1][j]:上方区域的和。
  • sum[i][j-1]:左侧区域的和。
  • sum[i-1][j-1]:左上角区域重复计算的部分,需要减去。

这样通过累加计算每个位置的前缀和,最终可以在常数时间内求出任意子矩阵的和。

2.2 子矩阵和的查询

通过上述方式构造的二维前缀和数组,可以快速计算任意子矩阵的元素和。给定一个矩阵区域的左上角 (row1, col1) 和右下角 (row2, col2),其和可以通过以下公式计算:

sumRegion(row1, col1, row2, col2) = sum[row2+1][col2+1]- sum[row1][col2+1]- sum[row2+1][col1]+ sum[row1][col1]

三、Java 实现

以下是使用二维前缀和优化矩阵区域和查询的 Java 实现。我们将使用 NumMatrix 类来实现:

public class NumMatrix {private int[][] sum;// 构造函数:计算二维前缀和public NumMatrix(int[][] matrix) {int n = matrix.length;int m = matrix[0].length;sum = new int[n + 1][m + 1];  // 创建一个多出一行一列的前缀和数组// 填充前缀和数组for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) {sum[i][j] = matrix[i - 1][j - 1] + sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1];}}}// 查询子矩阵的和public int sumRegion(int row1, int col1, int row2, int col2) {row1++;col1++;row2++;col2++;return sum[row2][col2] - sum[row1 - 1][col2] - sum[row2][col1 - 1] + sum[row1 - 1][col1 - 1];}public static void main(String[] args) {// 示例矩阵int[][] matrix = {{3, 2, 1, 4},{1, 5, 3, 2},{4, 2, 2, 1},{7, 4, 3, 5}};// 创建 NumMatrix 对象NumMatrix numMatrix = new NumMatrix(matrix);// 查询子矩阵 (1,1) 到 (2,2) 的和System.out.println(numMatrix.sumRegion(1, 1, 2, 2));  // 输出:15}
}
3.1 代码分析
  1. 构造函数NumMatrix(int[][] matrix) 用来构造二维前缀和数组 sum。首先,构造一个大小为 (n+1) x (m+1) 的数组,额外的行和列用于处理边界问题。然后通过双重循环填充 sum 数组,利用之前的公式逐步计算前缀和。

  2. sumRegion 方法sumRegion(int row1, int col1, int row2, int col2) 用于查询子矩阵 (row1, col1)(row2, col2) 的和。通过前缀和的计算公式,能够在常数时间内返回结果。

  3. 主函数:在 main 方法中,我们定义了一个 matrix,并创建了 NumMatrix 对象来处理前缀和的计算。然后调用 sumRegion 方法查询从 (1,1)(2,2) 的子矩阵和,输出为 15

四、时间复杂度

  • 前缀和数组的构造:构造二维前缀和数组的时间复杂度是 O(m * n),其中 mn 分别是矩阵的行数和列数。
  • 查询子矩阵和:查询的时间复杂度是 O(1),因为我们只需要做常数次的数组访问和加减操作。

五、应用场景

二维前缀和特别适用于以下场景:

  1. 静态矩阵区域求和:如果我们需要对矩阵中多个子矩阵进行求和,二维前缀和能够显著减少查询时间。
  2. 优化算法中的区间求和:在一些动态规划或分治算法中,二维前缀和可以高效地处理二维区间和查询。

相关文章:

二维前缀和:高效求解矩阵区域和问题

在处理二维矩阵时&#xff0c;频繁计算某一子矩阵的和是一个常见的操作。传统的做法是直接遍历该子矩阵&#xff0c;时间复杂度较高。当矩阵非常大且有大量的查询时&#xff0c;直接计算将变得低效。为了提高效率&#xff0c;我们可以通过 二维前缀和 技巧在常数时间内解决这个…...

鸢尾花书《编程不难》02---学习书本里面的三个案例

文章目录 1.引言2.第一个例子---模拟硬币的投掷结果3.第二个例子---混合两个一元高斯分布的随机数4.第三个例子---线性回归的作图5.关于书中的问题的解决方案 1.引言 今天的这个文章主要是阅读学习鸢尾花书系列的第一本《编程不难》&#xff0c;今天主要是记录下书里面的两个例…...

MySQL(高级特性篇) 13 章——事务基础知识

一、数据库事务概述 事务是数据库区别于文件系统的重要特性之一 &#xff08;1&#xff09;存储引擎支持情况 SHOW ENGINES命令来查看当前MySQL支持的存储引擎都有哪些&#xff0c;以及这些存储引擎是否支持事务能看出在MySQL中&#xff0c;只有InnoDB是支持事务的 &#x…...

CSS Display属性完全指南

CSS Display属性完全指南 引言核心概念常用display值详解1. block&#xff08;块级元素&#xff09;2. inline&#xff08;行内元素&#xff09;3. inline-block&#xff08;行内块级元素&#xff09;4. flex&#xff08;弹性布局&#xff09;5. grid&#xff08;网格布局&…...

【机器学习篇】K-Means 算法详解:从理论到实践的全面解析

网罗开发 &#xff08;小红书、快手、视频号同名&#xff09; 大家好&#xff0c;我是 展菲&#xff0c;目前在上市企业从事人工智能项目研发管理工作&#xff0c;平时热衷于分享各种编程领域的软硬技能知识以及前沿技术&#xff0c;包括iOS、前端、Harmony OS、Java、Python等…...

IntelliJ IDEA远程开发代理远程服务器端口(免费内网穿透)

IntelliJ IDEA远程开发代理远程服务器端口&#xff08;免费内网穿透&#xff09;&#xff08;JetBrains家的其他IDE应该也支持&#xff09; 之前看到宇宙第一IDE VS Code好像默认代理了远程的端口&#xff0c;但是一直没找到IDEA的同类功能&#xff0c;这次终于发现了 以Intell…...

内核定时器3-用户空间定时器

用户空间定时器与内核定时器的关系 虽然用户空间定时器和内核定时器在实现上各自独立&#xff0c;但用户空间定时器通常依赖于内核定时器提供的基础设施。以下是具体关系&#xff1a; 依赖性 用户空间定时器的实现基于内核定时器。 例如&#xff0c;POSIX 定时器使用内核的 h…...

C++ 字面量深度解析:从基础到实战进阶

在 C 开发中&#xff0c;字面量&#xff08;Literal&#xff09;不仅是基础语法的一部分&#xff0c;更是提升代码可读性、安全性和性能的关键工具。本文将深入探讨 C 字面量的高级特性、最新标准支持&#xff08;C11/14/17/20&#xff09;以及实际开发中的应用技巧&#xff0c…...

论文paper(更新...)

目录 是否rebuttal&#xff1f;rebuttal 技巧 是否rebuttal&#xff1f; 如果不rebuttal 肯定会拒稿&#xff0c;编辑也会给审稿人发信息&#xff0c;如下&#xff1a; Comment: Thanks for your efforts in reviewing this paper. The authors have neither submitted a rebu…...

变形金刚多元宇宙

1 涉及的公司 1.1 孩之宝HasBro 孩之宝与Takara签订协议后&#xff0c;孩之宝开始使用Takara的专利进行研发。 1.2 日本特佳丽Takara公司 特佳丽Takara Diaclone可变形恐龙的机器人玩具 Microman可变形汽车的机器人玩具 1.3 日本东映TOEI ANIMTION 1.4 美国漫威 为了推广玩具…...

HTTP协议的无状态和无连接

无连接 ①无连接的含义 这里所说的无连接并不是指不连接&#xff0c;客户与服务器之间的HTTP连接是一种一次性连接&#xff0c;它限制每次连接只处理一个请求&#xff0c;当服务器返回本次请求的应答后便立即关闭连接&#xff0c;下次请求再重新建立连接。这种一次性连接主要考…...

ASP.NET代码审计 SQL注入篇(简单记录)

sql注入&#xff0c;全局搜索 Request QueryString ToString() select select * aspx是设计页面&#xff0c;而aspx.cs是类页面&#xff0c;也就是说设计页面用到的类信息在这个页面里面&#xff0c;其实就是把设计和实现分离开来。 源码 using System; using System.Collect…...

毫秒级响应的VoIP中的系统组合推荐

在高并发、低延迟、毫秒级响应的 VoIP 场景中&#xff0c;选择合适的操作系统组合至关重要。以下是针对 Ubuntu linux-lowlatency、CentOS Stream kernel-rt 和 Debian 自定义 PREEMPT_RT 的详细对比及推荐&#xff1a; 1. 系统组合对比 特性Ubuntu linux-lowlatencyCentO…...

w186格障碍诊断系统spring boot设计与实现

&#x1f64a;作者简介&#xff1a;多年一线开发工作经验&#xff0c;原创团队&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取&#xff0c;记得注明来意哦~&#x1f339;赠送计算机毕业设计600个选题excel文…...

shell -c

个人博客地址&#xff1a;shell -c | 一张假钞的真实世界 shell -c {string}&#xff1a;表示命令从-c后的字符串读取。在需要使用管道或者重定向需要sudo时很有用&#xff0c;如下&#xff1a; $ sudo find ../*/exportFiles -mtime 15 -name "*" | xargs -I {} r…...

(笔记+作业)书生大模型实战营春节卷王班---L1G3000 浦语提示词工程实践

学员闯关手册&#xff1a;https://aicarrier.feishu.cn/wiki/QtJnweAW1iFl8LkoMKGcsUS9nld 课程视频&#xff1a;https://www.bilibili.com/video/BV13U1VYmEUr/ 课程文档&#xff1a;https://github.com/InternLM/Tutorial/tree/camp4/docs/L0/Python 关卡作业&#xff1a;htt…...

文献学习笔记:中风醒脑液(FYTF-919)临床试验解读:有效还是无效?

【中风醒脑液&#xff08;FYTF-919&#xff09;临床试验解读&#xff1a;有效还是无效&#xff1f;】 在发表于 The Lancet &#xff08;2024 年 11 月 30 日&#xff0c;第 404 卷&#xff09;的临床研究《Traditional Chinese medicine FYTF-919 (Zhongfeng Xingnao oral pr…...

Chapter2 Amplifiers, Source followers Cascodes

Chapter2 Amplifiers, Source followers & Cascodes MOS单管根据输入输出, 可分为CS放大器, source follower和cascode 三种结构. Single-transistor amplifiers 这一章学习模拟电路基本单元-单管放大器 单管运放由Common-Source加上DC电流源组成. Avgm*Rds, gm和rds和…...

从0开始使用面对对象C语言搭建一个基于OLED的图形显示框架(绘图设备封装)

目录 图像层的底层抽象——绘图设备抽象 如何抽象一个绘图设备&#xff1f; 桥接绘图设备&#xff0c;特化为OLED设备 题外话&#xff1a;设备的属性&#xff0c;与设计一个相似函数化简的通用办法 使用函数指针来操作设备 总结一下 图像层的底层抽象——绘图设备抽象 在…...

Android学习19 -- 手搓App

1 前言 之前工作中&#xff0c;很多时候要搞一个简单的app去验证底层功能&#xff0c;Android studio又过于重型&#xff0c;之前用gradle&#xff0c;被版本匹配和下载外网包折腾的堪称噩梦。所以搞app都只有找应用的同事帮忙。一直想知道一些简单的app怎么能手搓一下&#x…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

PL0语法,分析器实现!

简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...