二维前缀和:高效求解矩阵区域和问题
在处理二维矩阵时,频繁计算某一子矩阵的和是一个常见的操作。传统的做法是直接遍历该子矩阵,时间复杂度较高。当矩阵非常大且有大量的查询时,直接计算将变得低效。为了提高效率,我们可以通过 二维前缀和 技巧在常数时间内解决这个问题。
本文将通过一个具体的 Java 实现,介绍如何使用二维前缀和优化子矩阵求和问题。
关键是二维前缀和数组的构造,以及求解区域和的代码部分
测试链接:https://leetcode.cn/problems/range-sum-query-2d-immutable/
一、前缀和的概念
前缀和是解决区间和问题的经典技巧。在一维数组中,前缀和数组 prefixSum 用于存储从数组开头到当前位置的累加和,这样我们可以在 O(1) 时间内查询任意区间 [l, r] 的和。
二维前缀和的思想类似,它在二维矩阵上扩展了前缀和的概念。给定一个 m x n 的矩阵 matrix,二维前缀和数组 sum 中的元素 sum[i][j] 表示从左上角 (0, 0) 到 (i-1, j-1) 的所有矩阵元素的和。通过构造这个前缀和数组,我们能够在常数时间内查询任意子矩阵的元素和。
二、二维前缀和的计算
2.1 二维前缀和的构建
对于一个 m x n 的矩阵 matrix,我们定义一个同样大小的前缀和数组 sum,其中 sum[i][j] 表示从 (0, 0) 到 (i-1, j-1) 的矩阵元素和。构造 sum[i][j] 的公式如下:
sum[i][j] = matrix[i-1][j-1] + sum[i-1][j] + sum[i][j-1] - sum[i-1][j-1]
matrix[i-1][j-1]:当前矩阵元素。sum[i-1][j]:上方区域的和。sum[i][j-1]:左侧区域的和。sum[i-1][j-1]:左上角区域重复计算的部分,需要减去。
这样通过累加计算每个位置的前缀和,最终可以在常数时间内求出任意子矩阵的和。
2.2 子矩阵和的查询
通过上述方式构造的二维前缀和数组,可以快速计算任意子矩阵的元素和。给定一个矩阵区域的左上角 (row1, col1) 和右下角 (row2, col2),其和可以通过以下公式计算:
sumRegion(row1, col1, row2, col2) = sum[row2+1][col2+1]- sum[row1][col2+1]- sum[row2+1][col1]+ sum[row1][col1]
三、Java 实现
以下是使用二维前缀和优化矩阵区域和查询的 Java 实现。我们将使用 NumMatrix 类来实现:
public class NumMatrix {private int[][] sum;// 构造函数:计算二维前缀和public NumMatrix(int[][] matrix) {int n = matrix.length;int m = matrix[0].length;sum = new int[n + 1][m + 1]; // 创建一个多出一行一列的前缀和数组// 填充前缀和数组for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) {sum[i][j] = matrix[i - 1][j - 1] + sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1];}}}// 查询子矩阵的和public int sumRegion(int row1, int col1, int row2, int col2) {row1++;col1++;row2++;col2++;return sum[row2][col2] - sum[row1 - 1][col2] - sum[row2][col1 - 1] + sum[row1 - 1][col1 - 1];}public static void main(String[] args) {// 示例矩阵int[][] matrix = {{3, 2, 1, 4},{1, 5, 3, 2},{4, 2, 2, 1},{7, 4, 3, 5}};// 创建 NumMatrix 对象NumMatrix numMatrix = new NumMatrix(matrix);// 查询子矩阵 (1,1) 到 (2,2) 的和System.out.println(numMatrix.sumRegion(1, 1, 2, 2)); // 输出:15}
}
3.1 代码分析
-
构造函数:
NumMatrix(int[][] matrix)用来构造二维前缀和数组sum。首先,构造一个大小为(n+1) x (m+1)的数组,额外的行和列用于处理边界问题。然后通过双重循环填充sum数组,利用之前的公式逐步计算前缀和。 -
sumRegion方法:sumRegion(int row1, int col1, int row2, int col2)用于查询子矩阵(row1, col1)到(row2, col2)的和。通过前缀和的计算公式,能够在常数时间内返回结果。 -
主函数:在
main方法中,我们定义了一个matrix,并创建了NumMatrix对象来处理前缀和的计算。然后调用sumRegion方法查询从(1,1)到(2,2)的子矩阵和,输出为15。
四、时间复杂度
- 前缀和数组的构造:构造二维前缀和数组的时间复杂度是
O(m * n),其中m和n分别是矩阵的行数和列数。 - 查询子矩阵和:查询的时间复杂度是
O(1),因为我们只需要做常数次的数组访问和加减操作。
五、应用场景
二维前缀和特别适用于以下场景:
- 静态矩阵区域求和:如果我们需要对矩阵中多个子矩阵进行求和,二维前缀和能够显著减少查询时间。
- 优化算法中的区间求和:在一些动态规划或分治算法中,二维前缀和可以高效地处理二维区间和查询。
相关文章:
二维前缀和:高效求解矩阵区域和问题
在处理二维矩阵时,频繁计算某一子矩阵的和是一个常见的操作。传统的做法是直接遍历该子矩阵,时间复杂度较高。当矩阵非常大且有大量的查询时,直接计算将变得低效。为了提高效率,我们可以通过 二维前缀和 技巧在常数时间内解决这个…...
鸢尾花书《编程不难》02---学习书本里面的三个案例
文章目录 1.引言2.第一个例子---模拟硬币的投掷结果3.第二个例子---混合两个一元高斯分布的随机数4.第三个例子---线性回归的作图5.关于书中的问题的解决方案 1.引言 今天的这个文章主要是阅读学习鸢尾花书系列的第一本《编程不难》,今天主要是记录下书里面的两个例…...
MySQL(高级特性篇) 13 章——事务基础知识
一、数据库事务概述 事务是数据库区别于文件系统的重要特性之一 (1)存储引擎支持情况 SHOW ENGINES命令来查看当前MySQL支持的存储引擎都有哪些,以及这些存储引擎是否支持事务能看出在MySQL中,只有InnoDB是支持事务的 &#x…...
CSS Display属性完全指南
CSS Display属性完全指南 引言核心概念常用display值详解1. block(块级元素)2. inline(行内元素)3. inline-block(行内块级元素)4. flex(弹性布局)5. grid(网格布局&…...
【机器学习篇】K-Means 算法详解:从理论到实践的全面解析
网罗开发 (小红书、快手、视频号同名) 大家好,我是 展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、Harmony OS、Java、Python等…...
IntelliJ IDEA远程开发代理远程服务器端口(免费内网穿透)
IntelliJ IDEA远程开发代理远程服务器端口(免费内网穿透)(JetBrains家的其他IDE应该也支持) 之前看到宇宙第一IDE VS Code好像默认代理了远程的端口,但是一直没找到IDEA的同类功能,这次终于发现了 以Intell…...
内核定时器3-用户空间定时器
用户空间定时器与内核定时器的关系 虽然用户空间定时器和内核定时器在实现上各自独立,但用户空间定时器通常依赖于内核定时器提供的基础设施。以下是具体关系: 依赖性 用户空间定时器的实现基于内核定时器。 例如,POSIX 定时器使用内核的 h…...
C++ 字面量深度解析:从基础到实战进阶
在 C 开发中,字面量(Literal)不仅是基础语法的一部分,更是提升代码可读性、安全性和性能的关键工具。本文将深入探讨 C 字面量的高级特性、最新标准支持(C11/14/17/20)以及实际开发中的应用技巧,…...
论文paper(更新...)
目录 是否rebuttal?rebuttal 技巧 是否rebuttal? 如果不rebuttal 肯定会拒稿,编辑也会给审稿人发信息,如下: Comment: Thanks for your efforts in reviewing this paper. The authors have neither submitted a rebu…...
变形金刚多元宇宙
1 涉及的公司 1.1 孩之宝HasBro 孩之宝与Takara签订协议后,孩之宝开始使用Takara的专利进行研发。 1.2 日本特佳丽Takara公司 特佳丽Takara Diaclone可变形恐龙的机器人玩具 Microman可变形汽车的机器人玩具 1.3 日本东映TOEI ANIMTION 1.4 美国漫威 为了推广玩具…...
HTTP协议的无状态和无连接
无连接 ①无连接的含义 这里所说的无连接并不是指不连接,客户与服务器之间的HTTP连接是一种一次性连接,它限制每次连接只处理一个请求,当服务器返回本次请求的应答后便立即关闭连接,下次请求再重新建立连接。这种一次性连接主要考…...
ASP.NET代码审计 SQL注入篇(简单记录)
sql注入,全局搜索 Request QueryString ToString() select select * aspx是设计页面,而aspx.cs是类页面,也就是说设计页面用到的类信息在这个页面里面,其实就是把设计和实现分离开来。 源码 using System; using System.Collect…...
毫秒级响应的VoIP中的系统组合推荐
在高并发、低延迟、毫秒级响应的 VoIP 场景中,选择合适的操作系统组合至关重要。以下是针对 Ubuntu linux-lowlatency、CentOS Stream kernel-rt 和 Debian 自定义 PREEMPT_RT 的详细对比及推荐: 1. 系统组合对比 特性Ubuntu linux-lowlatencyCentO…...
w186格障碍诊断系统spring boot设计与实现
🙊作者简介:多年一线开发工作经验,原创团队,分享技术代码帮助学生学习,独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取,记得注明来意哦~🌹赠送计算机毕业设计600个选题excel文…...
shell -c
个人博客地址:shell -c | 一张假钞的真实世界 shell -c {string}:表示命令从-c后的字符串读取。在需要使用管道或者重定向需要sudo时很有用,如下: $ sudo find ../*/exportFiles -mtime 15 -name "*" | xargs -I {} r…...
(笔记+作业)书生大模型实战营春节卷王班---L1G3000 浦语提示词工程实践
学员闯关手册:https://aicarrier.feishu.cn/wiki/QtJnweAW1iFl8LkoMKGcsUS9nld 课程视频:https://www.bilibili.com/video/BV13U1VYmEUr/ 课程文档:https://github.com/InternLM/Tutorial/tree/camp4/docs/L0/Python 关卡作业:htt…...
文献学习笔记:中风醒脑液(FYTF-919)临床试验解读:有效还是无效?
【中风醒脑液(FYTF-919)临床试验解读:有效还是无效?】 在发表于 The Lancet (2024 年 11 月 30 日,第 404 卷)的临床研究《Traditional Chinese medicine FYTF-919 (Zhongfeng Xingnao oral pr…...
Chapter2 Amplifiers, Source followers Cascodes
Chapter2 Amplifiers, Source followers & Cascodes MOS单管根据输入输出, 可分为CS放大器, source follower和cascode 三种结构. Single-transistor amplifiers 这一章学习模拟电路基本单元-单管放大器 单管运放由Common-Source加上DC电流源组成. Avgm*Rds, gm和rds和…...
从0开始使用面对对象C语言搭建一个基于OLED的图形显示框架(绘图设备封装)
目录 图像层的底层抽象——绘图设备抽象 如何抽象一个绘图设备? 桥接绘图设备,特化为OLED设备 题外话:设备的属性,与设计一个相似函数化简的通用办法 使用函数指针来操作设备 总结一下 图像层的底层抽象——绘图设备抽象 在…...
Android学习19 -- 手搓App
1 前言 之前工作中,很多时候要搞一个简单的app去验证底层功能,Android studio又过于重型,之前用gradle,被版本匹配和下载外网包折腾的堪称噩梦。所以搞app都只有找应用的同事帮忙。一直想知道一些简单的app怎么能手搓一下&#x…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机
这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...
莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...
