当前位置: 首页 > news >正文

第二十章 存储函数

目录

一、概述

二、语法

三、示例


一、概述

前面章节中,我们详细讲解了MySQL中的存储过程,掌握了存储过程之后,学习存储函数则肥仓简单,存储函数其实是一种特殊的存储过程,也就是有返回值的存储过程。存储函数的参数只能是IN类型的。

二、语法

CREATE FUNCTION 存储函数名称 ([ 参数列表 ])
RETURNS type [characteristic ...]
BEGIN
-- SQL语句
RETURN ...;
END ;

characteristic说明:

DETERMINISTIC相同的输入参数总是产生相同的结果

NO SQL 不包含 SQL 语句。

READS SQL DATA包含读取数据的语句,但不包含写入数据的语句。

三、示例

计算从1累加到n的值,n为传入的参数值。

create function fun1(n int)
returns int deterministic
begindeclare total int default 0;while n > 0 doset total := total + n;set n := n - 1;end while;return total;
end;select fun1(50);

mysql8.0版本中binlog默认是开启的,一旦开启了,mysql就要求在定义存储过程时,需要指定

characteristic特性,否则就会报如下错误:

相关文章:

第二十章 存储函数

目录 一、概述 二、语法 三、示例 一、概述 前面章节中,我们详细讲解了MySQL中的存储过程,掌握了存储过程之后,学习存储函数则肥仓简单,存储函数其实是一种特殊的存储过程,也就是有返回值的存储过程。存储函数的参数…...

架构规划之任务边界划分过程中承接分配

架构师在边界划分的过程中需要做什么事情呢?接下来,我们会讨论一些关于任务分配的 基础假设,以及由这些基础假设而带来的决策路径。 所谓任务边界划分,就是判定某个任务在多个承接方中,应该归属到哪个承接方的过程。…...

【C++】线程池实现

目录 一、线程池简介线程池的核心组件实现步骤 二、C11实现线程池源码 三、线程池源码解析1. 成员变量2. 构造函数2.1 线程初始化2.2 工作线程逻辑 3. 任务提交(enqueue方法)3.1 方法签名3.2 任务封装3.3 任务入队 4. 析构函数4.1 停机控制 5. 关键技术点解析5.1 完美转发实现5…...

vsnprintf的概念和使用案例

vsnprintf 是 C/C 标准库中用于格式化字符串的安全函数&#xff0c;属于 <stdio.h>&#xff08;C&#xff09;或 <cstdio>&#xff08;C&#xff09;头文件。它是 snprintf 的可变参数版本&#xff08;v 表示 va_list&#xff09;&#xff0c;允许通过 va_list 处理…...

解读隐私保护工具 Fluidkey:如何畅游链上世界而不暴露地址?

作者&#xff1a;Techub 独家解读 撰文&#xff1a;Tia&#xff0c;Techub News 隐私不只是个人权利的象征&#xff0c;更是我们迈向透明、信任未来的重要过渡桥梁。如果你还未意识到隐私的重要性&#xff0c;推荐阅读 KeyMapDAO 的文章《「被出卖的自由」&#xff1a;我到底该…...

Linux环境Kanass安装配置简明教程

Kanass是一款国产开源免费的项目管理软件&#xff0c;本文将介绍如何快速在linux centos环境下安装配置&#xff0c;以快速上手。 1. 安装 以下以linux centos7下安装为例。 下载&#xff0c;下载地址:Kanass - 下载&#xff0c;下载Linux安装包如tiklab-kanass-1.0.4.rpm&am…...

数据分析常用的AI工具

数据分析领域中常用的AI工具种类繁多&#xff0c;涵盖了从数据处理、分析到可视化和预测的各个环节。以下是一些常见且广泛应用的AI数据分析工具及其特点&#xff1a; 1. 数据处理与清洗工具 Python库&#xff1a;如PandasAI&#xff0c;集成了生成式AI能力&#xff0c;支持自…...

项目中常用中间件有哪些?分别起什么作用?

在项目开发中&#xff0c;常用的中间件包括消息中间件、缓存中间件、数据库中间件等&#xff0c;以下是一些常见的中间件及其作用&#xff1a; 消息中间件 Kafka&#xff1a;一般用于处理大规模的消息数据&#xff0c;具有高吞吐量、低延迟的特点&#xff0c;适用于日志收集、…...

kaggle视频行为分析1st and Future - Player Contact Detection

这次比赛的目标是检测美式橄榄球NFL比赛中球员经历的外部接触。您将使用视频和球员追踪数据来识别发生接触的时刻&#xff0c;以帮助提高球员的安全。两种接触&#xff0c;一种是人与人的&#xff0c;另一种是人与地面&#xff0c;不包括脚底和地面的&#xff0c;跟我之前做的这…...

1. junit5介绍

JUnit 5 是 Java 生态中最流行的单元测试框架&#xff0c;由 JUnit Platform、JUnit Jupiter 和 JUnit Vintage 三个子项目组成。以下是 JUnit 5 的全面使用指南及示例&#xff1a; 一、环境配置 1. Maven 依赖 <dependency><groupId>org.junit.jupiter</grou…...

(脚本学习)BUU18 [CISCN2019 华北赛区 Day2 Web1]Hack World1

自用 题目 考虑是不是布尔盲注&#xff0c;如何测试&#xff1a;用"1^1^11 1^0^10&#xff0c;就像是真真真等于真&#xff0c;真假真等于假"这个测试 SQL布尔盲注脚本1 import requestsurl "http://8e4a9bf2-c055-4680-91fd-5b969ebc209e.node5.buuoj.cn…...

Caxa 二次开发 ObjectCRX-1 踩坑:环境配置以及 Helloworld

绝了&#xff0c;坑是真 nm 的多&#xff0c;官方给的文档里到处都是坑。 用的环境 ObjectCRX&#xff0c;以下简称 objcrx。 #1 安装环境 & 参考文档的大坑 #1.1 Caxa 提供的文档和环境安装包 首先一定要跟 Caxa 对应版本的帮助里提供的 ObjectCRX 安装器 (wizard) 匹配…...

【自然语言处理(NLP)】生成词向量:GloVe(Global Vectors for Word Representation)原理及应用

文章目录 介绍GloVe 介绍核心思想共现矩阵1. 共现矩阵的定义2. 共现概率矩阵的定义3. 共现概率矩阵的意义4. 共现概率矩阵的构建步骤5. 共现概率矩阵的应用6. 示例7. 优缺点优点缺点 **总结** 目标函数训练过程使用预训练的GloVe词向量 优点应用总结 个人主页&#xff1a;道友老…...

bable-预设

babel 有多种预设&#xff0c;最常见的预设是 babel/preset-env&#xff0c;它可以让你使用最新的 JS 语法&#xff0c;而无需针对每种语法转换设置具体的插件。 babel/preset-env 预设 安装 npm i -D babel/preset-env配置 .babelrc 文件 在根目录下新建 .babelrc 文件&a…...

回顾生化之父三上真司的游戏思想

1. 放养式野蛮成长路线&#xff0c;开创生存恐怖类型 三上进入capcom后&#xff0c;没有培训&#xff0c;没有师傅手把手的指导&#xff0c;而是每天摸索写策划书&#xff0c;老员工给出不行的评语后&#xff0c;扔掉旧的重写新的。 然后突然就成为游戏总监&#xff0c;进入开…...

无公网IP 外网访问青龙面板

青龙面板是一款基于 Docker 的自动化管理平台&#xff0c;用户可以通过简便的 Web 界面&#xff0c;轻松的添加、管理和监控各种自动化任务。而且这款面板还支持多用户、多任务、任务依赖和日志监控&#xff0c;个人和团队都比较适合使用。 本文将详细的介绍如何用 Docker 在本…...

中国证券基本知识汇总

中国证券市场是一个多层次、多领域的市场&#xff0c;涉及到各种金融工具、交易方式、市场参与者等内容。以下是中国证券基本知识的汇总&#xff1a; 1. 证券市场概述 证券市场&#xff1a;是指买卖证券&#xff08;如股票、债券、基金等&#xff09;的市场。证券市场可以分为…...

C基础寒假练习(2)

一、输出3-100以内的完美数&#xff0c;(完美数&#xff1a;因子和(因子不包含自身)数本身 #include <stdio.h>// 函数声明 int isPerfectNumber(int num);int main() {printf("3-100以内的完美数有:\n");for (int i 3; i < 100; i){if (isPerfectNumber…...

Baklib如何提升内容中台智能化推荐系统的精准服务与用户体验

内容概要 在数字化转型的浪潮中&#xff0c;内容中台的智能化推荐系统成为提升用户体验的重要工具。Baklib作为行业领先者&#xff0c;在这一领域积极探索&#xff0c;推出了具有前瞻性的解决方案&#xff0c;旨在提高内容的匹配度和推荐的精准性。本文将深入探讨Baklib如何通…...

【Java】位图 布隆过滤器

位图 初识位图 位图, 实际上就是将二进制位作为哈希表的一个个哈希桶的数据结构, 由于二进制位只能表示 0 和 1, 因此通常用于表示数据是否存在. 如下图所示, 这个位图就用于标识 0 ~ 14 中有什么数字存在 可以看到, 我们这里相当于是把下标作为了 key-value 的一员. 但是这…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

省略号和可变参数模板

本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...

Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成

一个面向 Java 开发者的 Sring-Ai 示例工程项目&#xff0c;该项目是一个 Spring AI 快速入门的样例工程项目&#xff0c;旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计&#xff0c;每个模块都专注于特定的功能领域&#xff0c;便于学习和…...

elementUI点击浏览table所选行数据查看文档

项目场景&#xff1a; table按照要求特定的数据变成按钮可以点击 解决方案&#xff1a; <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...

人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型

在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重&#xff0c;适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解&#xff0c;并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...

Monorepo架构: Nx Cloud 扩展能力与缓存加速

借助 Nx Cloud 实现项目协同与加速构建 1 &#xff09; 缓存工作原理分析 在了解了本地缓存和远程缓存之后&#xff0c;我们来探究缓存是如何工作的。以计算文件的哈希串为例&#xff0c;若后续运行任务时文件哈希串未变&#xff0c;系统会直接使用对应的输出和制品文件。 2 …...

[USACO23FEB] Bakery S

题目描述 Bessie 开了一家面包店! 在她的面包店里&#xff0c;Bessie 有一个烤箱&#xff0c;可以在 t C t_C tC​ 的时间内生产一块饼干或在 t M t_M tM​ 单位时间内生产一块松糕。 ( 1 ≤ t C , t M ≤ 10 9 ) (1 \le t_C,t_M \le 10^9) (1≤tC​,tM​≤109)。由于空间…...

密码学基础——SM4算法

博客主页&#xff1a;christine-rr-CSDN博客 ​​​​专栏主页&#xff1a;密码学 &#x1f4cc; 【今日更新】&#x1f4cc; 对称密码算法——SM4 目录 一、国密SM系列算法概述 二、SM4算法 2.1算法背景 2.2算法特点 2.3 基本部件 2.3.1 S盒 2.3.2 非线性变换 ​编辑…...