【Java异步编程】CompletableFuture基础(1):创建不同线程的子任务、子任务链式调用与异常处理
文章目录
- 1. 三种实现接口
- 2. 链式调用:保证链的顺序性与异步性
- 3. CompletableFuture创建CompletionStage子任务
- 4. 处理异常
- a. 创建回调钩子
- b. 调用handle()方法统一处理异常和结果
- 5. 如何选择线程池:不同的业务选择不同的线程池
CompletableFuture是JDK 1.8引入的实现类,该类实现了Future和CompletionStage两个接口。该类的实例作为一个异步任务,可以在自己异步执行完成之后触发一些其他的异步任务,从而达到异步回调的效果。
CompletionStage代表异步计算过程中的某一个阶段,一个阶段完成以后可能会进入另一个阶段。一个阶段可以理解为一个子任务,每一个子任务会包装一个Java函数式接口实例,表示该子任务所要执行的操作。
1. 三种实现接口
每个CompletionStage子任务所包装的可以是一个Function、Consumer或者Runnable函数式接口实例。
这三个常用的函数式接口的特点如下:
| 被包装接口 | 功能描述 |
|---|---|
| Function | Function接口的特点是:有输入、有输出。包装了Function实例的CompletionStage子任务需要一个输入参数,并会产生一个输出结果到下一步。 |
| Runnable | Runnable接口的特点是:无输入、无输出。包装了Runnable实例的CompletionStage子任务既不需要任何输入参数,又不会产生任何输出。 |
| Consumer | Consumer接口的特点是:有输入、无输出。包装了Consumer实例的CompletionStage子任务需要一个输入参数,但不会产生任何输出。 |
2. 链式调用:保证链的顺序性与异步性
多个CompletionStage构成了一条任务流水线,一个环节执行完成了可以将结果移交给下一个环节(子任务)。多个CompletionStage子任务之间可以使用链式调用。
下面是一个顺序调用的例子:
使用
CompletionStage及其方法构建了一个异步任务链,thenApply用于对前一个阶段的结果进行计算并传递结果,thenAccept用于消费前一个阶段的结果并执行操作,thenRun用于执行无输入输出的操作。
oneStage//被thenApply包装CompletionStage子任务,由输入输出.thenApply(x -> square(x)) //消耗上游输出,但是没有输出.thenAccept(y -> System.out.println(y)) //不消耗上一个子任务的输出又不产生结果.thenRun(() -> System.out.println())
这种链式操作可以方便地将多个异步操作连接起来,同时保证了操作的顺序性和异步性,提高了代码的可维护性和并发性能。
接下来是一个异步调用的例子:
在这个例子中,task2 和 task3 都依赖于 task1 完成后执行,但它们可能并行执行,也就是说,task2 和 task3 的执行顺序是不确定的,它们不一定会按照 thenRunAsync 的顺序执行。
CompletableFuture<Void> task1 = CompletableFuture.runAsync(() -> {System.out.println("Task 1");
});CompletableFuture<Void> task2 = task1.thenRunAsync(() -> {System.out.println("Task 2");
});CompletableFuture<Void> task3 = task1.thenRunAsync(() -> {System.out.println("Task 3");
});
3. CompletableFuture创建CompletionStage子任务
CompletableFuture定义了一组方法用于创建CompletionStage子任务(或者阶段性任务),基础的方法如下:
//子任务包装一个Runnable实例,并调用ForkJoinPool.commonPool()线程池来执行
public static CompletableFuture<Void> runAsync(Runnable runnable)//子任务包装一个Runnable实例,并调用指定的executor线程池来执行
public static CompletableFuture<Void> runAsync(Runnable runnable, Executor executor)//子任务包装一个Supplier实例,并调用ForkJoinPool.commonPool()线程池来执行
public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier)//子任务包装一个Supplier实例,并使用指定的executor线程池来执行
public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier, Executor executor)
其中主要注意的信息是:
- Supplier 表示一个无参数但有返回值的函数,Runnable表示无惨无返回值的函数
- 在使用CompletableFuture创建CompletionStage子任务时,如果没有指定Executor线程池,在默认情况下CompletionStage会使用公共的ForkJoinPool线程池。
- 它们都会交给线程池执行,get方法会堵塞主线程等待执行结果。
给一个例子:
//无返回值异步调用
@Test
public void runAsyncDemo() throws Exception { CompletableFuture<Void> future = CompletableFuture.runAsync(() -> { sleepSeconds(1);//模拟执行1秒 Print.tco("run end ..."); }); //等待异步任务执行完成,最多等待2秒 future.get(2, TimeUnit.SECONDS);
} //有返回值异步调用
@Test
public void supplyAsyncDemo() throws Exception { CompletableFuture<Long> future = CompletableFuture.supplyAsync(() -> { long start = System.currentTimeMillis(); sleepSeconds(1);//模拟执行1秒 Print.tco("run end ..."); return System.currentTimeMillis() - start; }); //等待异步任务执行完成,现时等待2秒 long time = future.get(2, TimeUnit.SECONDS); Print.tco("异步执行耗时(秒) = " + time / 1000);
}
4. 处理异常
a. 创建回调钩子
可以为CompletionStage子任务设置特定的回调钩子,当计算结果完成或者抛出异常的时候,执行这些特定的回调钩子。
//设置子任务完成时的回调钩子
public CompletableFuture<T> whenComplete(BiConsumer<? super T,? super Throwable> action)//设置子任务完成时的回调钩子,可能不在同一线程执行
public CompletableFuture<T> whenCompleteAsync(BiConsumer<? super T,? super Throwable> action)//设置子任务完成时的回调钩子,提交给线程池executor执行
public CompletableFuture<T> whenCompleteAsync(BiConsumer<? super T,? super Throwable> action,Executor executor)//设置异常处理的回调钩子
public CompletableFuture<T> exceptionally(Function<Throwable,? extends T> fn)
@Test
public void whenCompleteDemo() throws Exception { CompletableFuture<Void> future = CompletableFuture.runAsync(() -> { sleepSeconds(1);//模拟执行1秒 Print.tco("抛出异常!"); throw new RuntimeException("发生异常"); //Print.tco("run end ..."); }); //设置执行完成后的回调钩子 future.whenComplete(new BiConsumer<Void, Throwable>() { @Override public void accept(Void t, Throwable action) { Print.tco("执行完成!"); } }); //设置发生异常后的回调钩子 future.exceptionally(new Function<Throwable, Void>() { @Override public Void apply(Throwable t) { Print.tco("执行失败!" + t.getMessage()); return null; } }); future.get();
}[ForkJoinPool.commonPool-worker-9]:抛出异常!
[main]:执行完成!
[ForkJoinPool.commonPool-worker-9]:执行失败!java.lang.RuntimeException: 发生异常
java.util.concurrent.ExecutionException: java.lang.RuntimeException: 发生异常
有如下几个注意点:
- 调用cancel()方法取消CompletableFuture时,任务被视为异常完成,completeExceptionally()方法所设置的异常回调钩子也会被执行。
- 如果没有设置异常回调钩子,发生内部异常时会有两种情况发生:
- 在调用get()时,如果遇到内部异常,get()方法就会抛出ExecutionException(执行异常)。
- 在调用join()和getNow(T)启动任务时,如果遇到内部异常,join()和getNow(T)方法就会抛出CompletionException。
b. 调用handle()方法统一处理异常和结果
//在执行任务的同一个线程中处理异常和结果
public <U> CompletionStage<U> handle(BiFunction<? super T, Throwable, ? extends U> fn);//可能不在执行任务的**同一个线程**中处理异常和结果
public <U> CompletionStage<U> handleAsync(BiFunction<? super T, Throwable, ? extends U> fn);//在指定线程池executor中处理异常和结果
public <U> CompletionStage<U> handleAsync(BiFunction<? super T, Throwable, ? extends U> fn,Executor executor);
@Test
public void handleDemo() throws Exception { CompletableFuture<Void> future = CompletableFuture.runAsync(() -> { sleepSeconds(1);//模拟执行1秒 Print.tco("抛出异常!"); throw new RuntimeException("发生异常"); //Print.tco("run end ..."); }); //设置执行完成后的回调钩子 future.handle(new BiFunction<Void, Throwable, Void>() { @Override public Void apply(Void input, Throwable throwable) { if (throwable == null) { Print.tcfo("没有发生异常!"); } else { Print.tcfo("sorry,发生了异常!"); } return null; } }); future.get();
}//
//[ForkJoinPool.commonPool-worker-1]:抛出异常!
//[ForkJoinPool.commonPool-worker-1|CompletableFutureDemo$3.apply]: sorry,发生了异常!
5. 如何选择线程池:不同的业务选择不同的线程池
默认情况下,通过静态方法runAsync()、supplyAsync()创建的CompletableFuture任务会使用公共的ForkJoinPool线程池,默认的线程数是CPU的核数。当然,它的线程数可以通过以下JVM参数设置
option:-Djava.util.concurrent.ForkJoinPool.common.parallelism
如果所有CompletableFuture共享一个线程池,那么一旦有任务执行一些很慢的IO操作,就会导致线程池中的所有线程都阻塞在IO操作上,造成线程饥饿,进而影响整个系统的性能。所以,强烈建议大家根据不同的业务类型创建不同的线程池,以避免互相干扰。
相关文章:
【Java异步编程】CompletableFuture基础(1):创建不同线程的子任务、子任务链式调用与异常处理
文章目录 1. 三种实现接口2. 链式调用:保证链的顺序性与异步性3. CompletableFuture创建CompletionStage子任务4. 处理异常a. 创建回调钩子b. 调用handle()方法统一处理异常和结果 5. 如何选择线程池:不同的业务选择不同的线程池 CompletableFuture是JDK…...
ESXI虚拟机中部署docker会降低服务器性能
在 8 核 16GB 的 ESXi 虚拟机中部署 Docker 的性能影响分析 在 ESXi 虚拟机中运行 Docker 容器时,性能影响主要来自以下几个方面: 虚拟化开销:ESXi 虚拟化层和 Docker 容器化层的叠加。资源竞争:虚拟机与容器之间对 CPU、内存、…...
ASP.NET Core与配置系统的集成
目录 配置系统 默认添加的配置提供者 加载命令行中的配置。 运行环境 读取方法 User Secrets 注意事项 Zack.AnyDBConfigProvider 案例 配置系统 默认添加的配置提供者 加载现有的IConfiguration。加载项目根目录下的appsettings.json。加载项目根目录下的appsettin…...
中间件的概念及基本使用
什么是中间件 中间件是ASP.NET Core的核心组件,MVC框架、响应缓存、身份验证、CORS、Swagger等都是内置中间件。 广义上来讲:Tomcat、WebLogic、Redis、IIS;狭义上来讲,ASP.NET Core中的中间件指ASP.NET Core中的一个组件。中间件…...
SpringBoot 整合 Mybatis:注解版
第一章:注解版 导入配置: <groupId>org.mybatis.spring.boot</groupId><artifactId>mybatis-spring-boot-starter</artifactId><version>1.3.1</version> </dependency> 步骤: 配置数据源见 Druid…...
18.[前端开发]Day18-王者荣耀项目实战(一)
01-06 项目实战 1 代码规范 2 CSS编写顺序 3 组件化开发思想 组件化开发思路 项目整体思路 – 各个击破 07_(掌握)王者荣耀-top-整体布局完成 完整代码 01_page_top1.html <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8…...
Kafka 使用说明(kafka官方文档中文)
文章来源:kafka -- 南京筱麦软件有限公司 第 1 步:获取 KAFKA 下载最新的 Kafka 版本并提取它: $ tar -xzf kafka_{{scalaVersion}}-{{fullDotVersion}}.tgz $ cd kafka_{{scalaVersion}}-{{fullDotVersion}} 第 2 步:启动 KAFKA 环境 注意:您的本地环境必须安装 Java 8+。…...
基于多智能体强化学习的医疗AI中RAG系统程序架构优化研究
一、引言 1.1 研究背景与意义 在数智化医疗飞速发展的当下,医疗人工智能(AI)已成为提升医疗服务质量、优化医疗流程以及推动医学研究进步的关键力量。医疗 AI 借助机器学习、深度学习等先进技术,能够处理和分析海量的医疗数据,从而辅助医生进行疾病诊断、制定治疗方案以…...
Airflow:深入理解Apache Airflow Task
Apache Airflow是一个开源工作流管理平台,支持以编程方式编写、调度和监控工作流。由于其灵活性、可扩展性和强大的社区支持,它已迅速成为编排复杂数据管道的首选工具。在这篇博文中,我们将深入研究Apache Airflow 中的任务概念,探…...
multisim入门学习设计电路
文章目录 1.软件的安装2.电路基本设计2.1二极管的简介2.2最终的设计效果2.3设计流程介绍 3.如何测试电路 1.软件的安装 我是参考的下面的这个文章,文章的链接放在下面,亲测是有效的,如果是小白的话,可以参考一下: 【…...
【算法精练】二分查找算法总结
目录 前言 1. 二分查找(基础版) 2. 寻找左右端点 循环判断条件 求中间点 总结 前言 说起二分查找,也是一种十分常见的算法,最常听说的就是:二分查找只能在数组有序的场景下使用;其实也未必,…...
从零开始实现一个双向循环链表:C语言实战
文章目录 1链表的再次介绍2为什么选择双向循环链表?3代码实现:从初始化到销毁1. 定义链表节点2. 初始化链表3. 插入和删除节点4. 链表的其他操作5. 打印链表和判断链表是否为空6. 销毁链表 4测试代码5链表种类介绍6链表与顺序表的区别7存储金字塔L0: 寄存…...
MYSQL面试题总结(题目来源JavaGuide)
MYSQL基础架构 问题1:一条 SQL语句在MySQL中的执行过程 1. 解析阶段 (Parsing) 查询分析:当用户提交一个 SQL 语句时,MySQL 首先会对语句进行解析。这个过程会检查语法是否正确,确保 SQL 语句符合 MySQL 的语法规则。如果发现…...
visual studio安装
一、下载Visual Studio 访问Visual Studio官方网站。下载 Visual Studio Tools - 免费安装 Windows、Mac、Linux 在主页上找到并点击“下载 Visual Studio”按钮。 选择适合需求的版本,例如“Visual Studio Community”(免费版本)&#x…...
JVM执行引擎
一、执行引擎的概述: 执行引擎是]ava虚拟机核心的组成部分之一; “虚拟机”是一个相对于“物理机”的概念,这两种机器都有代码执行能力,其区别是物理机的执行引擎是直接建立在处理器、缓存、指令集和操作系统层面上的,而虚拟机的执行引擎则…...
C# 9.0记录类型:解锁开发效率的魔法密码
一、引言:记录类型的神奇登场 在 C# 的编程世界中,数据结构就像是构建软件大厦的基石,其重要性不言而喻。然而,传统的数据结构定义方式,尤其是在处理简单的数据承载对象时,常常显得繁琐复杂。例如…...
搭建自己的专属AI——使用Ollama+AnythingLLM+Python实现DeepSeek本地部署
前言 最近DeepSeek模型非常火,其通过对大模型的蒸馏得到的小模型可以较轻松地在个人电脑上运行,这也使得我们有机会在本地构建一个专属于自己的AI,进而把AI“调教”为我们希望的样子。本篇文章中我将介绍如何使用OllamaAnythingLLMPython实现…...
『 C++ 』中理解回调类型在 C++ 中的使用方式。
文章目录 案例 1:图形绘制库中的回调使用场景说明代码实现代码解释 案例 2:网络服务器中的连接和消息处理回调场景说明代码实现代码解释 案例 3:定时器中的回调使用场景说明代码实现代码解释 以下将通过不同场景给出几个使用回调类型的具体案…...
git多人协作
目录 一、项目克隆 二、 1、进入克隆仓库设置 2、协作处理 3、冲突处理 4、多人协作分支的推送拉取删除 1、分支推送(2种) 2、远程分支拉取(2种) 3、远程分支删除 一、项目克隆 git clone 画船听雨眠/test1 (自定义的名…...
CTFSHOW-WEB入门-命令执行71-77
题目:web 71 题目:解题思路:分析可知highlight_file() 函数被禁了,先想办法看看根目录:cvar_export(scandir(dirname(‘/’))); 尝试一下发现很惊奇:(全是?)这种情况我也…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...
人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...
【免费数据】2005-2019年我国272个地级市的旅游竞争力多指标数据(33个指标)
旅游业是一个城市的重要产业构成。旅游竞争力是一个城市竞争力的重要构成部分。一个城市的旅游竞争力反映了其在旅游市场竞争中的比较优势。 今日我们分享的是2005-2019年我国272个地级市的旅游竞争力多指标数据!该数据集源自2025年4月发表于《地理学报》的论文成果…...
如何通过git命令查看项目连接的仓库地址?
要通过 Git 命令查看项目连接的仓库地址,您可以使用以下几种方法: 1. 查看所有远程仓库地址 使用 git remote -v 命令,它会显示项目中配置的所有远程仓库及其对应的 URL: git remote -v输出示例: origin https://…...
李沐--动手学深度学习--GRU
1.GRU从零开始实现 #9.1.2GRU从零开始实现 import torch from torch import nn from d2l import torch as d2l#首先读取 8.5节中使用的时间机器数据集 batch_size,num_steps 32,35 train_iter,vocab d2l.load_data_time_machine(batch_size,num_steps) #初始化模型参数 def …...
【2D与3D SLAM中的扫描匹配算法全面解析】
引言 扫描匹配(Scan Matching)是同步定位与地图构建(SLAM)系统中的核心组件,它通过对齐连续的传感器观测数据来估计机器人的运动。本文将深入探讨2D和3D SLAM中的各种扫描匹配算法,包括数学原理、实现细节以及实际应用中的性能对比,特别关注…...
