Dijkstra算法解析
Dijkstra算法,用于求解图中从一个起点到其他所有节点的最短路径。解决单源最短路径问题的有效方法。
条件
有向
带权路径
时间复杂度 O(n平方)
方法步骤
1 把图上的点分为两个集合 要求的起点 和除了起点之外的点 。能直达的写上权值 不能直达的写上无穷 自己到自己的距离是0
2 在除起点以外的中找权值最小的顶点,这个顶点加入起点所在的集合。由于新顶点的并入,可以把新顶点作为中转点,再重新计算起点到所有除已经并入顶点的距离,找最小的继续并入,直到所有顶点并入起点所在的集合。
以下是对代码的详细解析和注释:
代码解析
全局变量定义
#define N 1005 // 定义最大顶点数为1005
int n, m; // n表示顶点数,m表示边数
bool str[N]; // 用于标记是否已确定最短路径
int dis[N]; // 存储从起始点到各个顶点的最短距离
int g[N][N]; // 邻接矩阵,存储图的结构
-
N
:定义图中最大顶点数为1005。 -
n
和m
:分别表示图中的顶点数和边数。 -
str
:布尔数组,用于标记某个顶点是否已经确定了最短路径。 -
dis
:数组,存储从起点到每个顶点的最短距离。 -
g
:邻接矩阵,g[i][j]
表示从顶点i
到顶点j
的距离。
Dijkstra算法实现
void dijkstra() {// 初始化dis数组为一个很大的值(这里选择0x3f3f3f3f)memset(dis, 0x3f3f3f3f, sizeof(dis));// 起始点到自身的距离为0dis[1] = 0;for (int i = 1; i <= n; ++i) {int temp = -1; // 选择未确定的顶点// 寻找当前未确定的最小距离顶点for (int j = 1; j <= n; ++j)if (!str[j] && (temp == -1 || dis[j] < dis[temp]))temp = j;// 更新与该顶点相邻的其他顶点的距离for (int j = 1; j <= n; ++j)dis[j] = min(dis[j], dis[temp] + g[temp][j]);// 标记该顶点已经确定了最短路径str[temp] = true;}// 输出结果for (int i = 1; i <= n; ++i) {if (dis[i] == 0x3f3f3f3f)cout << "-1" << " "; // 如果没有到该顶点的路径则输出-1elsecout << dis[i] << " "; // 否则输出最短距离}
}
-
初始化:
-
memset(dis, 0x3f3f3f3f, sizeof(dis));
:将dis
数组初始化为一个很大的值(0x3f3f3f3f
),表示初始时从起点到其他顶点的距离是无穷大。 -
dis[1] = 0;
:将起点到自身的距离设置为0。
-
-
主循环:
-
for (int i = 1; i <= n; ++i)
:循环n
次,每次找到一个未确定最短路径的顶点。 -
int temp = -1;
:初始化当前未确定的最短距离顶点为 -1。 -
for (int j = 1; j <= n; ++j)
:遍历所有顶点,找到未确定最短路径的顶点中距离最短的顶点temp
。-
if (!str[j] && (temp == -1 || dis[j] < dis[temp]))
:如果顶点j
未确定最短路径且距离更短,则更新temp
。
-
-
for (int j = 1; j <= n; ++j)
:更新与顶点temp
相邻的其他顶点的距离。-
dis[j] = min(dis[j], dis[temp] + g[temp][j]);
:如果通过temp
到达j
的距离更短,则更新dis[j]
。
-
-
str[temp] = true;
:标记顶点temp
已经确定了最短路径。
-
-
结果输出:
-
遍历
dis
数组,输出从起点到每个顶点的最短距离。 -
如果
dis[i]
仍然是0x3f3f3f3f
,表示没有路径到达顶点i
,输出-1
。 -
否则输出
dis[i]
。
-
主函数
int main() {// 初始化邻接矩阵g为一个很大的值memset(g, 0x3f3f3f3f, sizeof(g));// 输入顶点数n和边数mcin >> n >> m;while (m--) { // 处理每一条边的输入int x, y, z;cin >> x >> y >> z;// 更新邻接矩阵g中的权值g[x][y] = min(g[x][y], z);}// 调用dijkstra函数求解dijkstra();return 0;
}
-
初始化邻接矩阵:
-
memset(g, 0x3f3f3f3f, sizeof(g));
:将邻接矩阵g
初始化为一个很大的值(0x3f3f3f3f
),表示初始时图中没有边。
-
-
输入图的边:
-
cin >> n >> m;
:读取顶点数n
和边数m
。 -
while (m--)
:循环m
次,读取每一条边的信息。-
cin >> x >> y >> z;
:读取边的起点x
、终点y
和权重z
。 -
g[x][y] = min(g[x][y], z);
:更新邻接矩阵g
中的权值,如果有多条边连接同一对顶点,只保留权重最小的那条边。
-
-
-
调用Dijkstra算法:
-
dijkstra();
:调用dijkstra
函数求解最短路径。
-
-
输出结果:
-
dijkstra
函数会输出从起点到每个顶点的最短距离。
-
示例输入和输出
示例输入
5 7
1 2 4
1 3 3
2 4 2
3 2 1
3 4 5
4 5 1
2 5 7
示例输出
0 2 3 4 5
解释
-
顶点 1 到顶点 2 的最短距离为 2(1 -> 3 -> 2)。
-
顶点 1 到顶点 3 的最短距离为 3(1 -> 3)。
-
顶点 1 到顶点 4 的最短距离为 4(1 -> 3 -> 2 -> 4)。
-
顶点 1 到顶点 5 的最短距离为 5(1 -> 3 -> 2 -> 4 -> 5)。
关键点总结
-
邻接矩阵:使用二维数组
g[N][N]
表示图的结构,g[i][j]
表示从顶点i
到顶点j
的距离。 -
选择最短距离顶点:通过遍历所有顶点,找到未确定最短路径的顶点中距离最短的顶点。
-
更新邻接顶点的距离:通过当前顶点更新其邻接顶点的距离。
-
标记顶点:使用布尔数组
str
标记顶点是否已经确定了最短路径。
Dijkstra算法详细步骤解析
1. 初始化
在算法开始之前,需要进行以下初始化操作:
-
初始化距离数组
dis
:-
将
dis
数组中的所有元素初始化为一个很大的值(如0x3f3f3f3f
),表示从起点到其他顶点的距离初始为无穷大。 -
将起点的距离设置为 0,即
dis[start] = 0
。
-
-
初始化访问标记数组
str
:-
将
str
数组中的所有元素初始化为false
,表示所有顶点初始时都未被访问过。
-
-
初始化邻接矩阵
g
:-
将邻接矩阵
g
中的所有元素初始化为一个很大的值(如0x3f3f3f3f
),表示初始时图中没有边。
-
2. 主循环
Dijkstra算法的核心是一个主循环,该循环执行 n
次(n
为顶点数),每次找到一个未访问的最短距离顶点,并更新其邻接顶点的距离。
-
选择未访问的最短距离顶点:
-
遍历所有顶点,找到未访问的顶点中距离最短的顶点
u
。 -
如果所有顶点都已被访问过,或者没有找到未访问的顶点,则退出循环。
-
-
更新邻接顶点的距离:
-
遍历顶点
u
的所有邻接顶点v
,如果通过u
到达v
的距离更短,则更新dis[v]
。 -
具体来说,如果
dis[u] + g[u][v] < dis[v]
,则更新dis[v] = dis[u] + g[u][v]
。
-
-
标记顶点为已访问:
-
将顶点
u
标记为已访问,即str[u] = true
,避免重复处理。
-
3. 结果输出
在主循环结束后,dis
数组中存储了从起点到每个顶点的最短距离。遍历 dis
数组,输出结果:
-
如果
dis[i]
仍然是初始的大值(如0x3f3f3f3f
),表示没有路径到达顶点i
,输出-1
。 -
否则,输出
dis[i]
,表示从起点到顶点i
的最短距离。
示例执行过程
假设图的结构如下:
-
顶点数
n = 5
-
边数
m = 7
-
边的权重如下:
-
1 -> 2: 4
-
1 -> 3: 3
-
2 -> 4: 2
-
3 -> 2: 1
-
3 -> 4: 5
-
4 -> 5: 1
-
2 -> 5: 7
-
初始化
-
dis
数组:[0, 0x3f3f3f3f, 0x3f3f3f3f, 0x3f3f3f3f, 0x3f3f3f3f]
-
str
数组:[false, false, false, false, false]
-
g
邻接矩阵:[[0x3f3f3f3f, 4, 3, 0x3f3f3f3f, 0x3f3f3f3f],[0x3f3f3f3f, 0x3f3f3f3f, 0x3f3f3f3f, 2, 0x3f3f3f3f],[0x3f3f3f3f, 1, 0x3f3f3f3f, 5, 0x3f3f3f3f],[0x3f3f3f3f, 0x3f3f3f3f, 0x3f3f3f3f, 0x3f3f3f3f, 1],[0x3f3f3f3f, 7, 0x3f3f3f3f, 0x3f3f3f3f, 0x3f3f3f3f] ]
第1次循环
-
选择未访问的最短距离顶点:
-
遍历所有顶点,找到未访问的顶点中距离最短的顶点
u = 1
(起点)。
-
-
更新邻接顶点的距离:
-
遍历顶点
1
的邻接顶点2
和3
:-
dis[2] = min(dis[2], dis[1] + g[1][2]) = min(0x3f3f3f3f, 0 + 4) = 4
-
dis[3] = min(dis[3], dis[1] + g[1][3]) = min(0x3f3f3f3f, 0 + 3) = 3
-
-
-
标记顶点为已访问:
-
str[1] = true
-
第2次循环
-
选择未访问的最短距离顶点:
-
遍历所有顶点,找到未访问的顶点中距离最短的顶点
u = 3
(dis[3] = 3
)。
-
-
更新邻接顶点的距离:
-
遍历顶点
3
的邻接顶点2
和4
:-
dis[2] = min(dis[2], dis[3] + g[3][2]) = min(4, 3 + 1) = 4
-
dis[4] = min(dis[4], dis[3] + g[3][4]) = min(0x3f3f3f3f, 3 + 5) = 8
-
-
-
标记顶点为已访问:
-
str[3] = true
-
第3次循环
-
选择未访问的最短距离顶点:
-
遍历所有顶点,找到未访问的顶点中距离最短的顶点
u = 2
(dis[2] = 4
)。
-
-
更新邻接顶点的距离:
-
遍历顶点
2
的邻接顶点4
和5
:-
dis[4] = min(dis[4], dis[2] + g[2][4]) = min(8, 4 + 2) = 6
-
dis[5] = min(dis[5], dis[2] + g[2][5]) = min(0x3f3f3f3f, 4 + 7) = 11
-
-
-
标记顶点为已访问:
-
str[2] = true
-
第4次循环
-
选择未访问的最短距离顶点:
-
遍历所有顶点,找到未访问的顶点中距离最短的顶点
u = 4
(dis[4] = 6
)。
-
-
更新邻接顶点的距离:
-
遍历顶点
4
的邻接顶点5
:-
dis[5] = min(dis[5], dis[4] + g[4][5]) = min(11, 6 + 1) = 7
-
-
-
标记顶点为已访问:
-
str[4] = true
-
第5次循环
-
选择未访问的最短距离顶点:
-
遍历所有顶点,找到未访问的顶点中距离最短的顶点
u = 5
(dis[5] = 7
)。
-
-
更新邻接顶点的距离:
-
顶点
5
没有邻接顶点,无需更新。
-
-
标记顶点为已访问:
-
str[5] = true
-
结果输出
遍历 dis
数组,输出从起点到每个顶点的最短距离:
-
dis[1] = 0
-
dis[2] = 4
-
dis[3] = 3
-
dis[4] = 6
-
dis[5] = 7
关键点总结
-
选择未访问的最短距离顶点:
-
每次选择未访问的顶点中距离最短的顶点,确保每一步都选择当前最优的顶点进行处理。
-
-
更新邻接顶点的距离:
-
通过当前顶点更新其邻接顶点的距离,确保每一步都更新到最新的最短距离。
-
-
标记顶点为已访问:
-
避免重复处理已访问的顶点,提高算法的效率。
-
-
结果输出:
-
最终输出从起点到每个顶点的最短距离,如果没有路径到达某个顶点,则输出
-1
-
相关文章:
Dijkstra算法解析
Dijkstra算法,用于求解图中从一个起点到其他所有节点的最短路径。解决单源最短路径问题的有效方法。 条件 有向 带权路径 时间复杂度 O(n平方) 方法步骤 1 把图上的点分为两个集合 要求的起点 和除了起点之外的点 。能直达的写上权值 不…...

C++ Primer 多维数组
欢迎阅读我的 【CPrimer】专栏 专栏简介:本专栏主要面向C初学者,解释C的一些基本概念和基础语言特性,涉及C标准库的用法,面向对象特性,泛型特性高级用法。通过使用标准库中定义的抽象设施,使你更加适应高级…...

maven mysql jdk nvm node npm 环境安装
安装JDK 1.8 11 环境 maven环境安装 打开网站 下载 下载zip格式 解压 自己创建一个maven库 以后在idea 使用maven时候重新设置一下 这三个地方分别设置 这时候maven才算设置好 nvm 管理 npm nodejs nvm下载 安装 Releases coreybutler/nvm-windows GitHub 一键安装且若有…...

SQL Server中RANK()函数:处理并列排名与自然跳号
RANK()是SQL Server的窗口函数,为结果集中的行生成排名。当出现相同值时,后续排名会跳过被占用的名次,形成自然间隔。与DENSE_RANK()的关键区别在于是否允许排名值连续。 语法: RANK() OVER ([PARTITION BY 分组列]ORDER BY 排序…...

如何运行Composer安装PHP包 安装JWT库
1. 使用Composer Composer是PHP的依赖管理工具,它允许你轻松地安装和管理PHP包。对于JWT,你可以使用firebase/php-jwt这个库,这是由Firebase提供的官方库。 安装Composer(如果你还没有安装的话): 访问Co…...

最新功能发布!AllData数据中台核心菜单汇总
🔥🔥 AllData大数据产品是可定义数据中台,以数据平台为底座,以数据中台为桥梁,以机器学习平台为中层框架,以大模型应用为上游产品,提供全链路数字化解决方案。 ✨奥零数据科技官网:http://www.aolingdata.com ✨AllData开源项目:https://github.com/alldatacenter/…...

【OS】AUTOSAR架构下的Interrupt详解(上篇)
目录 前言 正文 1.中断概念分析 1.1 中断处理API 1.2 中断级别 1.3 中断向量表 1.4 二类中断的嵌套 1.4.1概述 1.4.2激活 1.5一类中断 1.5.1一类中断的实现 1.5.2一类中断的嵌套 1.5.3在StartOS之前的1类ISR 1.5.4使用1类中断时的注意事项 1.6中断源的初始化 1.…...
大数据挖掘--两个角度理解相似度计算理论
文章目录 0 相似度计算可以转换成什么问题1 集合相似度的应用1.1 集合相似度1.1文档相似度1.2 协同过滤用户-用户协同过滤物品-物品协同过滤 1.2 文档的shingling--将文档表示成集合1.2.1 k-shingling1.2.2 基于停用词的 shingling 1.3 最小哈希签名1.4 局部敏感哈希算法&#…...
Win10微软商店重新安装指南
Win10微软商店重新安装指南 在使用Windows 10操作系统的过程中,微软商店(Microsoft Store)作为官方提供的应用下载平台,一直是用户获取和安装各类应用程序的重要渠道。然而,有时用户可能会遇到微软商店无法找到或误删的情况,这无疑给软件的安装和管理带来了不便。本文将…...
操作系统和中间件的信息收集
在浏览器中收集操作系统与中间件信息时,主要通过客户端JavaScript(用于操作系统/浏览器信息)和服务器端脚本(用于中间件信息)实现。以下是分步指南: 一、客户端操作系统信息收集(JavaScript&am…...

项目集成Spring Security授权部分
一、需求分析 业务背景 当前项目采用前后端分离架构,后端需要对接口访问进行严格控制,防止未授权访问。鉴于系统需要支持高并发与分布式部署,采用无状态认证方式显得尤为重要。 核心需求 无状态认证:使用 JWT 作为令牌࿰…...
5. k8s二进制集群之ETCD集群部署
下载etcd安装包创建etcd配置文件准备证书文件和etcd存储目录ETCD证书文件安装(分别对应指定节点)创建证书服务的配置文件启动etcd集群验证etcd集群状态继续上一篇文章《k8s二进制集群之ETCD集群证书生成》下面介绍一下etcd证书生成配置。 下载etcd安装包 https://github.com…...
MV结构下设置Qt表格的代理
目录 预备知识 模型 关联 刷新 示例 代理 模型 界面 结果 完整资料见: 所谓MV结构,是“model-view”(模型-视图)的简称。也就是说,表格的数据保存在model中,而视图由view实现。在我前面的很多博客…...

二维数组 C++ 蓝桥杯
1.稀疏矩阵 #include<iostream> using namespace std;const int N 1e4 10; int a[N][N];int main() {int n, m; cin >> n >> m;for (int i 1; i < n; i) {for (int j 1; j < m; j) {cin >> a[i][j];}}for (int j m; j > 1; j--) {for (i…...

【Linux】文件描述符
初识文件 之前我们认识到当我们进行创建出一个空文件在磁盘上也是占用一部分空间的,因为文件的组成是由文件内容和文件属性共同构成。 文件内容属性,那我们对文件进行操作无外乎就是对内容和属性两个方面进行操作。 文件在磁盘上进行存储,…...

大语言模型的个性化综述 ——《Personalization of Large Language Models: A Survey》
摘要: 本文深入解读了论文“Personalization of Large Language Models: A Survey”,对大语言模型(LLMs)的个性化领域进行了全面剖析。通过详细阐述个性化的基础概念、分类体系、技术方法、评估指标以及应用实践,揭示了…...

AI 编程工具—Cursor进阶使用 Agent模式
AI 编程工具—Cursor进阶使用 Agent模式 我们在使用Cursor 的是有,在Composer 模式下,提交的是有两种模式 Normal 模式,也就是默认的模式Agent 模式Agent 模式可以帮我们生成代码文件,执行程序,安装依赖,并且完成一些列的工作 这里有个点很重要就是在Agent 模式下,Cur…...

【AI大模型】DeepSeek API大模型接口实现
目录 一、DeepSeek发展历程 2023 年:创立与核心技术突破 2024 年:开源生态与行业落地 2025 年:多模态与全球化布局 性能对齐 OpenAI-o1 正式版 二、API接口调用 1.DeepSeek-V3模型调用 2.DeepSeek-R1模型调用 三、本地化部署接口调…...

Qt展厅播放器/多媒体播放器/中控播放器/帧同步播放器/硬解播放器/监控播放器
一、前言说明 音视频开发除了应用在安防监控、视频网站、各种流媒体app开发之外,还有一个小众的市场,那就是多媒体展厅场景,这个场景目前处于垄断地位的软件是HirenderS3,做的非常早而且非常全面,都是通用的需求&…...
Kafka分区策略实现
引言 Kafka 的分区策略决定了生产者发送的消息会被分配到哪个分区中,合理的分区策略有助于实现负载均衡、提高消息处理效率以及满足特定的业务需求。 轮询策略(默认) 轮询策略是 Kafka 默认的分区策略(当消息没有指定键时&…...

从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...

(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

ios苹果系统,js 滑动屏幕、锚定无效
现象:window.addEventListener监听touch无效,划不动屏幕,但是代码逻辑都有执行到。 scrollIntoView也无效。 原因:这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作,从而会影响…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...
Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?
Pod IP 的本质与特性 Pod IP 的定位 纯端点地址:Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址(如 10.244.1.2)无特殊名称:在 Kubernetes 中,它通常被称为 “Pod IP” 或 “容器 IP”生命周期:与 Pod …...