产品经理的人工智能课 02 - 自然语言处理
产品经理的人工智能课 02 - 自然语言处理
- 1 自然语言处理是什么
- 2 一个 NLP 算法的例子——n-gram 模型
- 3 预处理与重要概念
- 3.1 分词 Token
- 3.2 词向量化表示与 Word2Vec
- 4 与大语言模型的交互过程
- 参考链接
大语言模型(Large Language Models, LLMs)是自然语言处理(NLP)领域的一个重要分支和核心技术,两者关系密切。
所以我们先了解一些自然语言处理的基础概念,为后续了解大语言模型做一些铺垫。
作为一篇“科普”性质的文章,我会尽量避免使用数学公式、抽象的表述。
1 自然语言处理是什么
自然语言处理(Natural Language Processing,NLP)是人工智能和语言学的一个交叉领域,致力于让计算机理解、生成和处理人类语言,这对应了自然语言处理的三个重要领域,分别是:
- 自然语言理解(Natural Language Understanding, NLU):给定文本输入,分析其中的情感、抽取意图、匹配语义、进行摘要
- 自然语言转换(Natural Language Transformation, NLT):把一段文本进行翻译、风格转换,把语音识别成文字等等
- 自然语言生成(Natural Language Generation, NLG):根据指令生成文字、形成互动聊天、生成语音等
我们可以看出大语言模型结合了自然语言理解、自然语言转换和自然语言生成。
2 一个 NLP 算法的例子——n-gram 模型
为了方便大家理解 NLP,这里举一个 NLP 算法的例子。
我们先引入一个问题:want i english food 和 i want english food 哪个更像人话?
解决思路:我们准备一大堆的“人话”,即语料库,并对语料库中的前后关系进行统计,例如 i 后边是 want 的数量是多少、eat 后边是 food 的数量是多少。计算一句话是人话的可能性,就转化成了计算这句话中每两个词都挨着的可能性。
这个图片就非常直观地体现了这个思想

图片来源:自然语言处理中N-Gram模型介绍
明显看出 i want to eat lunch、food to eat、i want to spend 都是比较像“人话”的表述。
回到最初问题,即:want i english food 和 i want english food 哪个更像人话?就是分别计算两句话成立的可能性。
以 i want english food 为例,就是计算几件事同时发生的概率:
- 句子以 i 开头
- i 后边是 want
- want 后边是 english
- english 后边是 food
- 句子以 food 结尾
算法名称 n-gram,上面这个就是 n=2,即二元语言模型的示例,如果让 n=3,就是考虑连续 3 个单词同时出现的概率。
n-gram 算法的一个常见应用是推荐词备选

图片来源:自然语言处理中N-Gram模型介绍
3 预处理与重要概念
NLP 方法,通常都以文本数据集开始,可以来自于电子邮件、用户创作的内容、文学作品等等。
首先需要对这些文本数据集进行“预处理”,形成语料库(复数:corpora) ,常见的预处理操作包括:
- 文本清理:例如去除表情符号、多余的空格、大小写统一等
- 词形还原:将单词还原为词典中的标准形式(lemma),更准确但计算成本较高。例如:
"running"→"run" - 分词:将文本分割成最小单元(如单词、子词或字符)的过程,这里的“最小单元”是 NLP 处理中的最小单元,例如:
"我爱自然语言处理"→["我", "爱", "自然语言", "处理"] - 词向量化表示:将文本转换为数值形式,以便模型能够处理
其中“分词”和“词向量化表示”是在大语言模型中也常常提到,这里做一些重点介绍
3.1 分词 Token
分词(Tokenization) 是自然语言处理(NLP)中的一项基础且关键的任务,目的是将连续的文本分割成有意义的单元(如单词、子词或字符)。
其中最小单元称为标记(Token) ,也叫“令牌”,大模型接口收费中提到的 Token 就是这个“标记”。
用来完成分词任务的算法或者程序,被称为分词器(Tokenizer) 。

图片来源:传统 NLP 快速回顾
每种 NLP 算法都会根据自己的需求设置分词方式,常见的分词器种类包括:
- 基于规则的分词器: 这种分词器使用预定义的规则来分割文本,例如根据标点符号或特定的词语
- 基于统计的分词器: 这种分词器使用统计模型来预测词元的边界,例如基于 n-gram 或隐马尔可夫模型
- 基于词典的分词器:通过预先构建好的词典,将文本中的词语与词典中的词条进行匹配,从而实现分词
顺嘴一提,huggingface 中的 Tokenizer 实际上不光光是分词器,还包含了词向量化和语句编码的功能。
3.2 词向量化表示与 Word2Vec
为什么需要词向量化呢?因为计算机比较擅长处理数字,所以需要把文本数据转换成计算机可以理解的数值形式。
词的向量化表示方法有很多,目前被大语言模型广泛应用的方法是 Word2Vec,是 Google 在 2013 年推出的一个用于生成词向量的方法。
Word2Vec 通过训练一个浅层的神经网络,把每个 token 会变成一个多维向量(50 维或 100 维比较常见),当我们对这些向量进行运算, 会发现 v ( 国王 ) − v ( 男人 ) + v ( 女人 ) = v ( 女王 ) v(国王) - v(男人) + v(女人) = v(女王) v(国王)−v(男人)+v(女人)=v(女王),也就是说这些词向量能够捕捉到词语之间的语义关系,例如相似性、类比关系等。
我们也可以想象,代表红灯的向量,在某些维度上一定与代表太阳向量有比较大的相似性(都是红色的发光物体),在另一些维度上和代表自行车的向量有较大的相似性(都和交通有关)。
4 与大语言模型的交互过程
大语言模型(Large Language Models, LLMs)是自然语言处理(NLP)领域的一个重要分支和核心技术。
大语言模型基于深度学习的模型,通过大规模文本数据训练,能够生成和理解自然语言。ChatGPT、Gemini、豆包、QWen 等等大模型,都属于这个范畴。
当我们与大语言模型交互时,你会输入一系列文字。
大模型首先会对你的输入文本进行预处理,形成 token,把每个 token 变成一个向量,甚至把整句话或者段落变成一个个向量,并在回话期间保存在模型中,然后进行一些计算。
如上文所述,词向量是可以捕捉词语之间的语义关系的,所以这个计算过程就有机会分析输入文本的语法结构、语义关系和上下文信息,从而理解你的意图。
而大语言模型的输出过程,实际上是预测下一个词语或句子的概率分布,根据概率给出对应的文本,最终形成完整的文本回复。
关于大语言模型的训练和算法选择和更多的原理,将在后续文章中介绍。
参考链接
传统NLP与大模型入门:基础概念篇
PyTorch 自然语言处理
自然语言处理中N-Gram模型介绍
相关文章:
产品经理的人工智能课 02 - 自然语言处理
产品经理的人工智能课 02 - 自然语言处理 1 自然语言处理是什么2 一个 NLP 算法的例子——n-gram 模型3 预处理与重要概念3.1 分词 Token3.2 词向量化表示与 Word2Vec 4 与大语言模型的交互过程参考链接 大语言模型(Large Language Models, LLMs)是自然语…...
2024年MySQL 下载、安装及启动停止教程(非常详细),涉及命令行net start mysql80提示发生系统错误5的解决方案
一、安装包下载 官方网址: https://www.mysql.com/ MySQL 官方提供了两种不同的版本: 1.社区版本( MySQL Community Server ) :免费, 但MySQL 不提供任何技术支持 2.商业版本( MySQL Enterp…...
19.[前端开发]Day19-王者荣项目耀实战(二)
01_(掌握)王者荣耀-main-banner展示实现 完整代码 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewpor…...
lmk内存压力测试工具mem-pressure源码剖析
背景: android系统开发过程中,经常会遇到一些low memory kill的问题,在分析这些系统低内存导致被杀问题时候,经常因为不好复现而成为一个比较烦恼的阻碍。因为这种低内存问题本身就不属于一种功能操作类型的问题,属于…...
企业四要素如何用Java进行调用
一、什么是企业四要素? 企业四要素是在企业三要素(企业名称、统一社会信用代码、法定代表人姓名)的基础上,增加了一个关键要素,通常是企业注册号或企业银行账户信息。这种接口主要用于更全面的企业信息验证,…...
修剪二叉搜索树(力扣669)
这道题还是比较复杂,在递归上与之前写过的二叉树的题目都有所不同。如果当前递归到的子树的父节点不在范围中,我们根据节点数值的大小选择进行左递归还是右递归。为什么找到了不满足要求的节点之后,还要进行递归呢?因为该不满足要…...
一款由 .NET 官方团队开源的电子商务系统 - eShop
项目介绍 eShop是一款由.NET官方开源的,基于.NET Aspire构建的用于参考学习的服务架构电子商务系统,旨在展示如何利用.NET框架及其相关技术栈构建一个现代化的电子商务网站。该项目采用服务架构,将应用程序分解为多个独立的服务,…...
论最新技术编程类有什么,值得关注的点有什么呢?
在2025年的编程领域,新技术层出不穷。编程语言方面,Zig作为新一代系统级编程语言,凭借无隐藏控制流、出色的优化性能以及良好的C语言兼容性,被视作C语言强有力的替代者;Rust的应用范围不断拓展,在系统开发和Web后端开发中表现亮眼,其“零成本抽象”特性在保障内存安全的…...
Java入门进阶
文章目录 1、常用API 1.1、Math1.2、System1.3、Object1.4、Arrays1.5、基本类型包装类 1.5.1、基本类型包装类概述1.5.2、Integer1.5.3、int和String相互转换1.5.4、自动装箱和拆箱 1.6、日期类 1.6.1、Date类1.6.2、SimpleDateFormat类 1.6.2.1、格式化(从Date到…...
Java并发编程面试题:ThreadLocal(8题)
🧑 博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/?__c1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编…...
Zabbix7.0安装(Ubuntu24.04+LNMP)
1.选择版本 下载Zabbix 2.安装虚拟机 这里选择在Ubuntu24.04上安装Zabbix. 安装链接https://blog.csdn.net/weixin_58189050/article/details/145446065 配置源 vim /etc/apt/sources.list deb https://mirrors.aliyun.com/ubuntu/ noble main restricted universe multive…...
从 0 到 1 构建数仓之DWD层
在企业数字化转型进程中,数据仓库的建设至关重要,而 DWD 层(明细粒度事实层)作为数据仓库的核心支撑层,其搭建质量直接影响企业数据的分析价值与决策效率。本文将结合实际案例与行业经验,详细阐述企业如何从…...
S4 HANA手工记账Tax Payable – FB41
本文主要介绍在S4 HANA OP中手工记账Tax Payable – FB41。具体请参照如下内容: 手工记账Tax Payable – FB41 该事务代码用于手工处理税码统驭科目的记账,一般税码科目需要设置为只能自动记账,因此无法手工对税码统驭科目记账,但…...
【自然语言处理(NLP)】NLP实战:IMDB影评情感分析项目
文章目录 介绍IMDB影评情感分析项目数据集项目实现1. 导包2. 加载IMDB数据3. 查看部分数据4. 分词5. 加载数据整合6. 构建模型7. 词嵌入8. 初始化模型和权重9. glove词向量10. 训练和评估11. 预测 个人主页:道友老李 欢迎加入社区:道友老李的学习社区 介…...
DIY Shell:探秘进程构建与命令解析的核心原理
个人主页:chian-ocean 文章专栏-Linux 前言: Shell(外壳)是一个操作系统的用户界面,它提供了一种方式,使得用户能够与操作系统进行交互。Shell 是用户与操作系统之间的桥梁,允许用户通过命令行…...
通过Redisson构建延时队列并实现注解式消费
目录 一、序言二、延迟队列实现1、Redisson延时消息监听注解和消息体2、Redisson延时消息发布器3、Redisson延时消息监听处理器 三、测试用例四、结语 一、序言 两个月前接了一个4万的私活,做一个线上商城小程序,在交易过程中不可避免的一个问题就是用户…...
SQL Server配置管理器无法连接到 WMI 提供程序
目录 第一步第二部 第一步 发现没有资源管理器 在文件夹找到管理器 打开发现报这个错误 配置管理器无法连接到 WMI 提供程序第二部 https://blog.csdn.net/thb369208315/article/details/126954074...
Linux内核源码:ext4 extent详解
在 Linux 系统的庞大体系中,文件系统就像是一个井然有序的图书馆,而 ext4 文件系统则是这座图书馆中极为重要的 “藏书室”,它负责高效管理和存储数据。在 ext4 众多的奥秘中,ext4 extent 犹如一颗璀璨的明珠,起着关键…...
Maven jar 包下载失败问题处理
Maven jar 包下载失败问题处理 1.配置好国内的Maven源2.重新下载3. 其他问题 1.配置好国内的Maven源 打开⾃⼰的 Idea 检测 Maven 的配置是否正确,正确的配置如下图所示: 检查项⼀共有两个: 确认右边的两个勾已经选中,如果没有请…...
自指学习:AGI的元认知突破
文章目录 引言:从模式识别到认知革命一、自指学习的理论框架1.1 自指系统的数学定义1.2 认知架构的三重反射1.3 与传统元学习的本质区别二、元认知突破的技术路径2.1 自指神经网络架构2.2 认知效能评价体系2.3 知识表示的革命三、实现突破的关键挑战3.1 认知闭环的稳定性3.2 计…...
接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序
一、开发环境准备 工具安装: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 项目初始化: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
