当前位置: 首页 > news >正文

产品经理的人工智能课 02 - 自然语言处理

产品经理的人工智能课 02 - 自然语言处理

    • 1 自然语言处理是什么
    • 2 一个 NLP 算法的例子——n-gram 模型
    • 3 预处理与重要概念
      • 3.1 分词 Token
      • 3.2 词向量化表示与 Word2Vec
    • 4 与大语言模型的交互过程
    • 参考链接

大语言模型(Large Language Models, LLMs)是自然语言处理(NLP)领域的一个重要分支和核心技术,两者关系密切。
所以我们先了解一些自然语言处理的基础概念,为后续了解大语言模型做一些铺垫。

作为一篇“科普”性质的文章,我会尽量避免使用数学公式、抽象的表述。

1 自然语言处理是什么

自然语言处理(Natural Language Processing,NLP)是人工智能和语言学的一个交叉领域,致力于让计算机理解、生成和处理人类语言,这对应了自然语言处理的三个重要领域,分别是:

  • 自然语言理解(Natural Language Understanding, NLU):给定文本输入,分析其中的情感、抽取意图、匹配语义、进行摘要
  • 自然语言转换(Natural Language Transformation, NLT):把一段文本进行翻译、风格转换,把语音识别成文字等等
  • 自然语言生成(Natural Language Generation, NLG):根据指令生成文字、形成互动聊天、生成语音等

我们可以看出大语言模型结合了自然语言理解、自然语言转换和自然语言生成。

2 一个 NLP 算法的例子——n-gram 模型

为了方便大家理解 NLP,这里举一个 NLP 算法的例子。

我们先引入一个问题:want i english food 和 i want english food 哪个更像人话?
解决思路:我们准备一大堆的“人话”,即语料库,并对语料库中的前后关系进行统计,例如 i 后边是 want 的数量是多少、eat 后边是 food 的数量是多少。计算一句话是人话的可能性,就转化成了计算这句话中每两个词都挨着的可能性。

这个图片就非常直观地体现了这个思想
在这里插入图片描述
图片来源:自然语言处理中N-Gram模型介绍

明显看出 i want to eat lunch、food to eat、i want to spend 都是比较像“人话”的表述。
回到最初问题,即:want i english food 和 i want english food 哪个更像人话?就是分别计算两句话成立的可能性。
以 i want english food 为例,就是计算几件事同时发生的概率:

  • 句子以 i 开头
  • i 后边是 want
  • want 后边是 english
  • english 后边是 food
  • 句子以 food 结尾

算法名称 n-gram,上面这个就是 n=2,即二元语言模型的示例,如果让 n=3,就是考虑连续 3 个单词同时出现的概率。
n-gram 算法的一个常见应用是推荐词备选
在这里插入图片描述

图片来源:自然语言处理中N-Gram模型介绍

3 预处理与重要概念

NLP 方法,通常都以文本数据集开始,可以来自于电子邮件、用户创作的内容、文学作品等等。

首先需要对这些文本数据集进行“预处理”,形成语料库(复数:corpora) ,常见的预处理操作包括:

  • 文本清理:例如去除表情符号、多余的空格、大小写统一等
  • 词形还原:将单词还原为词典中的标准形式(lemma),更准确但计算成本较高。例如:"running""run"
  • 分词:将文本分割成最小单元(如单词、子词或字符)的过程,这里的“最小单元”是 NLP 处理中的最小单元,例如:"我爱自然语言处理"["我", "爱", "自然语言", "处理"]
  • 词向量化表示:将文本转换为数值形式,以便模型能够处理

其中“分词”和“词向量化表示”是在大语言模型中也常常提到,这里做一些重点介绍

3.1 分词 Token

分词(Tokenization) 是自然语言处理(NLP)中的一项基础且关键的任务,目的是将连续的文本分割成有意义的单元(如单词、子词或字符)。
其中最小单元称为标记(Token) ,也叫“令牌”,大模型接口收费中提到的 Token 就是这个“标记”。
用来完成分词任务的算法或者程序,被称为分词器(Tokenizer)

在这里插入图片描述

图片来源:传统 NLP 快速回顾

每种 NLP 算法都会根据自己的需求设置分词方式,常见的分词器种类包括:

  • 基于规则的分词器: 这种分词器使用预定义的规则来分割文本,例如根据标点符号或特定的词语
  • 基于统计的分词器: 这种分词器使用统计模型来预测词元的边界,例如基于 n-gram 或隐马尔可夫模型
  • 基于词典的分词器:通过预先构建好的词典,将文本中的词语与词典中的词条进行匹配,从而实现分词

顺嘴一提,huggingface 中的 Tokenizer 实际上不光光是分词器,还包含了词向量化和语句编码的功能。

3.2 词向量化表示与 Word2Vec

为什么需要词向量化呢?因为计算机比较擅长处理数字,所以需要把文本数据转换成计算机可以理解的数值形式。
词的向量化表示方法有很多,目前被大语言模型广泛应用的方法是 Word2Vec,是 Google 在 2013 年推出的一个用于生成词向量的方法。

Word2Vec 通过训练一个浅层的神经网络,把每个 token 会变成一个多维向量(50 维或 100 维比较常见),当我们对这些向量进行运算, 会发现 v ( 国王 ) − v ( 男人 ) + v ( 女人 ) = v ( 女王 ) v(国王) - v(男人) + v(女人) = v(女王) v(国王)v(男人)+v(女人)=v(女王),也就是说这些词向量能够捕捉到词语之间的语义关系,例如相似性、类比关系等。
我们也可以想象,代表红灯的向量,在某些维度上一定与代表太阳向量有比较大的相似性(都是红色的发光物体),在另一些维度上和代表自行车的向量有较大的相似性(都和交通有关)。

4 与大语言模型的交互过程

大语言模型(Large Language Models, LLMs)是自然语言处理(NLP)领域的一个重要分支和核心技术。
大语言模型基于深度学习的模型,通过大规模文本数据训练,能够生成和理解自然语言。ChatGPT、Gemini、豆包、QWen 等等大模型,都属于这个范畴。

当我们与大语言模型交互时,你会输入一系列文字。
大模型首先会对你的输入文本进行预处理,形成 token,把每个 token 变成一个向量,甚至把整句话或者段落变成一个个向量,并在回话期间保存在模型中,然后进行一些计算。
如上文所述,词向量是可以捕捉词语之间的语义关系的,所以这个计算过程就有机会分析输入文本的语法结构、语义关系和上下文信息,从而理解你的意图。
而大语言模型的输出过程,实际上是预测下一个词语或句子的概率分布,根据概率给出对应的文本,最终形成完整的文本回复。

关于大语言模型的训练和算法选择和更多的原理,将在后续文章中介绍。

参考链接

传统NLP与大模型入门:基础概念篇

PyTorch 自然语言处理

自然语言处理中N-Gram模型介绍

相关文章:

产品经理的人工智能课 02 - 自然语言处理

产品经理的人工智能课 02 - 自然语言处理 1 自然语言处理是什么2 一个 NLP 算法的例子——n-gram 模型3 预处理与重要概念3.1 分词 Token3.2 词向量化表示与 Word2Vec 4 与大语言模型的交互过程参考链接 大语言模型(Large Language Models, LLMs)是自然语…...

2024年MySQL 下载、安装及启动停止教程(非常详细),涉及命令行net start mysql80提示发生系统错误5的解决方案

一、安装包下载 官方网址: https://www.mysql.com/ MySQL 官方提供了两种不同的版本: 1.社区版本( MySQL Community Server ) :免费, 但MySQL 不提供任何技术支持 2.商业版本( MySQL Enterp…...

19.[前端开发]Day19-王者荣项目耀实战(二)

01_(掌握)王者荣耀-main-banner展示实现 完整代码 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewpor…...

lmk内存压力测试工具mem-pressure源码剖析

背景&#xff1a; android系统开发过程中&#xff0c;经常会遇到一些low memory kill的问题&#xff0c;在分析这些系统低内存导致被杀问题时候&#xff0c;经常因为不好复现而成为一个比较烦恼的阻碍。因为这种低内存问题本身就不属于一种功能操作类型的问题&#xff0c;属于…...

企业四要素如何用Java进行调用

一、什么是企业四要素&#xff1f; 企业四要素是在企业三要素&#xff08;企业名称、统一社会信用代码、法定代表人姓名&#xff09;的基础上&#xff0c;增加了一个关键要素&#xff0c;通常是企业注册号或企业银行账户信息。这种接口主要用于更全面的企业信息验证&#xff0c…...

修剪二叉搜索树(力扣669)

这道题还是比较复杂&#xff0c;在递归上与之前写过的二叉树的题目都有所不同。如果当前递归到的子树的父节点不在范围中&#xff0c;我们根据节点数值的大小选择进行左递归还是右递归。为什么找到了不满足要求的节点之后&#xff0c;还要进行递归呢&#xff1f;因为该不满足要…...

一款由 .NET 官方团队开源的电子商务系统 - eShop

项目介绍 eShop是一款由.NET官方开源的&#xff0c;基于.NET Aspire构建的用于参考学习的服务架构电子商务系统&#xff0c;旨在展示如何利用.NET框架及其相关技术栈构建一个现代化的电子商务网站。该项目采用服务架构&#xff0c;将应用程序分解为多个独立的服务&#xff0c;…...

论最新技术编程类有什么,值得关注的点有什么呢?

在2025年的编程领域,新技术层出不穷。编程语言方面,Zig作为新一代系统级编程语言,凭借无隐藏控制流、出色的优化性能以及良好的C语言兼容性,被视作C语言强有力的替代者;Rust的应用范围不断拓展,在系统开发和Web后端开发中表现亮眼,其“零成本抽象”特性在保障内存安全的…...

Java入门进阶

文章目录 1、常用API 1.1、Math1.2、System1.3、Object1.4、Arrays1.5、基本类型包装类 1.5.1、基本类型包装类概述1.5.2、Integer1.5.3、int和String相互转换1.5.4、自动装箱和拆箱 1.6、日期类 1.6.1、Date类1.6.2、SimpleDateFormat类 1.6.2.1、格式化&#xff08;从Date到…...

Java并发编程面试题:ThreadLocal(8题)

&#x1f9d1; 博主简介&#xff1a;CSDN博客专家&#xff0c;历代文学网&#xff08;PC端可以访问&#xff1a;https://literature.sinhy.com/#/?__c1000&#xff0c;移动端可微信小程序搜索“历代文学”&#xff09;总架构师&#xff0c;15年工作经验&#xff0c;精通Java编…...

Zabbix7.0安装(Ubuntu24.04+LNMP)

1.选择版本 下载Zabbix 2.安装虚拟机 这里选择在Ubuntu24.04上安装Zabbix. 安装链接https://blog.csdn.net/weixin_58189050/article/details/145446065 配置源 vim /etc/apt/sources.list deb https://mirrors.aliyun.com/ubuntu/ noble main restricted universe multive…...

从 0 到 1 构建数仓之DWD层

在企业数字化转型进程中&#xff0c;数据仓库的建设至关重要&#xff0c;而 DWD 层&#xff08;明细粒度事实层&#xff09;作为数据仓库的核心支撑层&#xff0c;其搭建质量直接影响企业数据的分析价值与决策效率。本文将结合实际案例与行业经验&#xff0c;详细阐述企业如何从…...

S4 HANA手工记账Tax Payable – FB41

本文主要介绍在S4 HANA OP中手工记账Tax Payable – FB41。具体请参照如下内容&#xff1a; 手工记账Tax Payable – FB41 该事务代码用于手工处理税码统驭科目的记账&#xff0c;一般税码科目需要设置为只能自动记账&#xff0c;因此无法手工对税码统驭科目记账&#xff0c;但…...

【自然语言处理(NLP)】NLP实战:IMDB影评情感分析项目

文章目录 介绍IMDB影评情感分析项目数据集项目实现1. 导包2. 加载IMDB数据3. 查看部分数据4. 分词5. 加载数据整合6. 构建模型7. 词嵌入8. 初始化模型和权重9. glove词向量10. 训练和评估11. 预测 个人主页&#xff1a;道友老李 欢迎加入社区&#xff1a;道友老李的学习社区 介…...

DIY Shell:探秘进程构建与命令解析的核心原理

个人主页&#xff1a;chian-ocean 文章专栏-Linux 前言&#xff1a; Shell&#xff08;外壳&#xff09;是一个操作系统的用户界面&#xff0c;它提供了一种方式&#xff0c;使得用户能够与操作系统进行交互。Shell 是用户与操作系统之间的桥梁&#xff0c;允许用户通过命令行…...

通过Redisson构建延时队列并实现注解式消费

目录 一、序言二、延迟队列实现1、Redisson延时消息监听注解和消息体2、Redisson延时消息发布器3、Redisson延时消息监听处理器 三、测试用例四、结语 一、序言 两个月前接了一个4万的私活&#xff0c;做一个线上商城小程序&#xff0c;在交易过程中不可避免的一个问题就是用户…...

SQL Server配置管理器无法连接到 WMI 提供程序

目录 第一步第二部 第一步 发现没有资源管理器 ​​​​ 在文件夹找到管理器 打开发现报这个错误 配置管理器无法连接到 WMI 提供程序第二部 https://blog.csdn.net/thb369208315/article/details/126954074...

Linux内核源码:ext4 extent详解

在 Linux 系统的庞大体系中&#xff0c;文件系统就像是一个井然有序的图书馆&#xff0c;而 ext4 文件系统则是这座图书馆中极为重要的 “藏书室”&#xff0c;它负责高效管理和存储数据。在 ext4 众多的奥秘中&#xff0c;ext4 extent 犹如一颗璀璨的明珠&#xff0c;起着关键…...

Maven jar 包下载失败问题处理

Maven jar 包下载失败问题处理 1.配置好国内的Maven源2.重新下载3. 其他问题 1.配置好国内的Maven源 打开⾃⼰的 Idea 检测 Maven 的配置是否正确&#xff0c;正确的配置如下图所示&#xff1a; 检查项⼀共有两个&#xff1a; 确认右边的两个勾已经选中&#xff0c;如果没有请…...

自指学习:AGI的元认知突破

文章目录 引言:从模式识别到认知革命一、自指学习的理论框架1.1 自指系统的数学定义1.2 认知架构的三重反射1.3 与传统元学习的本质区别二、元认知突破的技术路径2.1 自指神经网络架构2.2 认知效能评价体系2.3 知识表示的革命三、实现突破的关键挑战3.1 认知闭环的稳定性3.2 计…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

招商蛇口 | 执笔CID,启幕低密生活新境

作为中国城市生长的力量&#xff0c;招商蛇口以“美好生活承载者”为使命&#xff0c;深耕全球111座城市&#xff0c;以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子&#xff0c;招商蛇口始终与城市发展同频共振&#xff0c;以建筑诠释对土地与生活的…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

协议转换利器,profinet转ethercat网关的两大派系,各有千秋

随着工业以太网的发展&#xff0c;其高效、便捷、协议开放、易于冗余等诸多优点&#xff0c;被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口&#xff0c;具有实时性、开放性&#xff0c;使用TCP/IP和IT标准&#xff0c;符合基于工业以太网的…...

React从基础入门到高级实战:React 实战项目 - 项目五:微前端与模块化架构

React 实战项目&#xff1a;微前端与模块化架构 欢迎来到 React 开发教程专栏 的第 30 篇&#xff01;在前 29 篇文章中&#xff0c;我们从 React 的基础概念逐步深入到高级技巧&#xff0c;涵盖了组件设计、状态管理、路由配置、性能优化和企业级应用等核心内容。这一次&…...

【笔记】AI Agent 项目 SUNA 部署 之 Docker 构建记录

#工作记录 构建过程记录 Microsoft Windows [Version 10.0.27871.1000] (c) Microsoft Corporation. All rights reserved.(suna-py3.12) F:\PythonProjects\suna>python setup.py --admin███████╗██╗ ██╗███╗ ██╗ █████╗ ██╔════╝…...

使用ch340继电器完成随机断电测试

前言 如图所示是市面上常见的OTA压测继电器&#xff0c;通过ch340串口模块完成对继电器的分路控制&#xff0c;这里我编写了一个脚本方便对4路继电器的控制&#xff0c;可以设置开启时间&#xff0c;关闭时间&#xff0c;复位等功能 软件界面 在设备管理器查看串口号后&…...