【自然语言处理(NLP)】NLP实战:IMDB影评情感分析项目
文章目录
- 介绍
- IMDB影评情感分析
- 项目数据集
- 项目实现
- 1. 导包
- 2. 加载IMDB数据
- 3. 查看部分数据
- 4. 分词
- 5. 加载数据整合
- 6. 构建模型
- 7. 词嵌入
- 8. 初始化模型和权重
- 9. glove词向量
- 10. 训练和评估
- 11. 预测
个人主页:道友老李
欢迎加入社区:道友老李的学习社区
介绍
**自然语言处理(Natural Language Processing,NLP)**是计算机科学领域与人工智能领域中的一个重要方向。它研究的是人类(自然)语言与计算机之间的交互。NLP的目标是让计算机能够理解、解析、生成人类语言,并且能够以有意义的方式回应和操作这些信息。
NLP的任务可以分为多个层次,包括但不限于:
- 词法分析:将文本分解成单词或标记(token),并识别它们的词性(如名词、动词等)。
- 句法分析:分析句子结构,理解句子中词语的关系,比如主语、谓语、宾语等。
- 语义分析:试图理解句子的实际含义,超越字面意义,捕捉隐含的信息。
- 语用分析:考虑上下文和对话背景,理解话语在特定情境下的使用目的。
- 情感分析:检测文本中表达的情感倾向,例如正面、负面或中立。
- 机器翻译:将一种自然语言转换为另一种自然语言。
- 问答系统:构建可以回答用户问题的系统。
- 文本摘要:从大量文本中提取关键信息,生成简短的摘要。
- 命名实体识别(NER):识别文本中提到的特定实体,如人名、地名、组织名等。
- 语音识别:将人类的语音转换为计算机可读的文字格式。
NLP技术的发展依赖于算法的进步、计算能力的提升以及大规模标注数据集的可用性。近年来,深度学习方法,特别是基于神经网络的语言模型,如BERT、GPT系列等,在许多NLP任务上取得了显著的成功。随着技术的进步,NLP正在被应用到越来越多的领域,包括客户服务、智能搜索、内容推荐、医疗健康等。
IMDB影评情感分析

项目数据集
imdb数据集下载地址: http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz
项目实现
1. 导包
import os
import torch
from torch import nn
import dltools
2. 加载IMDB数据
def read_imdb(data_dir, is_train):data, labels = [], []for label in ('pos', 'neg'):folder_name = os.path.join(data_dir, 'train' if is_train else 'test', label)for file in os.listdir(folder_name):with open(os.path.join(folder_name, file), 'rb') as f:review = f.read().decode('utf-8').replace('\n', '')data.append(review)labels.append(1 if label == 'pos' else 0)return data, labelsdata_dir = r'D:\Projects\课程资料\自然语言处理(NLP)\学习\data\aclImdb'
train_data = read_imdb(data_dir, is_train=True)
print('训练集数目: ', len(train_data[0]))
训练集数目: 25000
3. 查看部分数据
for x, y in zip(train_data[0][:3], train_data[1][:3]):print('标签: ', y,'review: ', x[0:60])

4. 分词
train_tokens = dltools.tokenize(train_data[0], token='word')
vocab = dltools.Vocab(train_tokens, min_freq=5, reserved_tokens=['<pad>'])dltools.set_figsize()
dltools.plt.xlabel('# tokens per review')
dltools.plt.ylabel('count')
dltools.plt.hist([len(line) for line in train_tokens], bins=range(0, 1000, 50))

5. 加载数据整合
def load_data_imdb(data_dir, batch_size, num_steps=500):train_data = read_imdb(data_dir, True)test_data = read_imdb(data_dir, False)train_tokens = dltools.tokenize(train_data[0], token='word')test_tokens = dltools.tokenize(test_data[0], token='word')vocab = dltools.Vocab(train_tokens, min_freq=5, reserved_tokens=['<pad>'])train_features = torch.tensor([dltools.truncate_pad(vocab[line], num_steps, vocab['<pad>']) for line in train_tokens])test_features = torch.tensor([dltools.truncate_pad(vocab[line], num_steps, vocab['<pad>']) for line in test_tokens])train_iter = dltools.load_array((train_features, torch.tensor(train_data[1])), 64)test_iter = dltools.load_array((test_features, torch.tensor(train_data[1])), 64)return train_iter, test_iter, vocabdata_dir = r'D:\Projects\课程资料\自然语言处理(NLP)\学习\data\aclImdb'
train_iter, test_iter, vocab = load_data_imdb(data_dir, 64, num_steps=500)

6. 构建模型
前向传播:
- inputs (batch_size, num_steps)
- 循环神经网络输入的第一个维度是时间维
- 所以要对inputs做一个转置, 转置之后的形状(num_steps, batch_size)
- 再经过embedding层, 就变成(num_steps, batch_size, embed_size)
- 为了提供内存利用率和效率, 调用flatten_parameters让parameters的数据存放在内存中连续的块中. contiguous
- 返回两个东西: 输出, 上一个隐藏层在不同时间步的隐状态
- outputs :(num_steps, batch_size, 2 * num_hiddens)
- 连接初始和最终时间步的隐藏状态, 做为全连接的输入.
class BiRNN(nn.Module):def __init__(self, vocab_size, embed_size, num_hiddens, num_layers, **kwargs):super().__init__(**kwargs)self.embedding = nn.Embedding(vocab_size, embed_size)self.encoder = nn.LSTM(embed_size, num_hiddens, num_layers=num_layers, bidirectional=True)self.decoder = nn.Linear(4 * num_hiddens, 2)def forward(self, inputs):embedding = self.embedding(inputs.T)self.encoder.flatten_parameters()outputs, _ = self.encoder(embedding)# (batch, 4 * num_hiddens)encoding = torch.cat((outputs[0], outputs[-1]), dim=1)outs = self.decoder(encoding)return outs
7. 词嵌入
class TokenEmbedding:def __init__(self, file_path):self.idx_to_token, self.idx_to_vec = self._load_embedding(file_path)self.unknown_idx = 0self.token_to_idx = {token: idx for idx, token in enumerate(self.idx_to_token)}# 加载预训练词向量def _load_embedding(self, file_path):# bos eos unk...idx_to_token, idx_to_vec = ['<unk>'], []with open(file_path, 'r', encoding='utf-8') as f:for line in f:elems = line.rstrip().split(' ')token, elems = elems[0], [float(elem) for elem in elems[1:]]# 跳过fasttext的第一行if len(elems)> 1:idx_to_token.append(token)idx_to_vec.append(elems)idx_to_vec = [[0] * len(idx_to_vec[0])] + idx_to_vecreturn idx_to_token, torch.tensor(idx_to_vec)def __getitem__(self, tokens):indices = [self.token_to_idx.get(token, self.unknown_idx) for token in tokens]vecs = self.idx_to_vec[torch.tensor(indices)]return vecsdef __len__(self):return len(self.idx_to_token)
8. 初始化模型和权重
embed_size, num_hiddens, num_layers = 100, 100, 2
devices = dltools.try_all_gpus()
net = BiRNN(len(vocab), embed_size, num_hiddens, num_layers)def init_weights(m):if type(m) == nn.Linear:nn.init.xavier_uniform_(m.weight)if type(m) == nn.LSTM:for param in m._flat_weights_names:if 'weight' in param:nn.init.xavier_uniform_(m._parameters[param])net.apply(init_weights)
BiRNN((embedding): Embedding(49347, 100)(encoder): LSTM(100, 100, num_layers=2, bidirectional=True)(decoder): Linear(in_features=400, out_features=2, bias=True)
)
9. glove词向量
glove_embedding = TokenEmbedding(r'D:\Projects\课程资料\自然语言处理(NLP)\学习\data\glove.6B.100d.txt')
embeds = glove_embedding[vocab.idx_to_token]
10. 训练和评估
net.embedding.weight.data.copy_(embeds)
net.embedding.weight.requires_grad = False# 训练和评估
lr, num_epochs = 0.01, 100
trainer = torch.optim.Adam(net.parameters(), lr=lr)
loss = nn.CrossEntropyLoss(reduction='none')
dltools.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices)



后面的省略…
11. 预测
def predict_sentiment(net, vocab, sequence):sequence = torch.tensor(vocab[sequence.split()], device=dltools.try_gpu())label = torch.argmax(net(sequence.reshape(1, -1)), dim=1)return 'positive' if label == 1 else 'negative'predict_sentiment(net, vocab, 'this moive is great')
predict_sentiment(net, vocab, 'this moive is so bad')
'positive'
'negative'
相关文章:
【自然语言处理(NLP)】NLP实战:IMDB影评情感分析项目
文章目录 介绍IMDB影评情感分析项目数据集项目实现1. 导包2. 加载IMDB数据3. 查看部分数据4. 分词5. 加载数据整合6. 构建模型7. 词嵌入8. 初始化模型和权重9. glove词向量10. 训练和评估11. 预测 个人主页:道友老李 欢迎加入社区:道友老李的学习社区 介…...
DIY Shell:探秘进程构建与命令解析的核心原理
个人主页:chian-ocean 文章专栏-Linux 前言: Shell(外壳)是一个操作系统的用户界面,它提供了一种方式,使得用户能够与操作系统进行交互。Shell 是用户与操作系统之间的桥梁,允许用户通过命令行…...
通过Redisson构建延时队列并实现注解式消费
目录 一、序言二、延迟队列实现1、Redisson延时消息监听注解和消息体2、Redisson延时消息发布器3、Redisson延时消息监听处理器 三、测试用例四、结语 一、序言 两个月前接了一个4万的私活,做一个线上商城小程序,在交易过程中不可避免的一个问题就是用户…...
SQL Server配置管理器无法连接到 WMI 提供程序
目录 第一步第二部 第一步 发现没有资源管理器 在文件夹找到管理器 打开发现报这个错误 配置管理器无法连接到 WMI 提供程序第二部 https://blog.csdn.net/thb369208315/article/details/126954074...
Linux内核源码:ext4 extent详解
在 Linux 系统的庞大体系中,文件系统就像是一个井然有序的图书馆,而 ext4 文件系统则是这座图书馆中极为重要的 “藏书室”,它负责高效管理和存储数据。在 ext4 众多的奥秘中,ext4 extent 犹如一颗璀璨的明珠,起着关键…...
Maven jar 包下载失败问题处理
Maven jar 包下载失败问题处理 1.配置好国内的Maven源2.重新下载3. 其他问题 1.配置好国内的Maven源 打开⾃⼰的 Idea 检测 Maven 的配置是否正确,正确的配置如下图所示: 检查项⼀共有两个: 确认右边的两个勾已经选中,如果没有请…...
自指学习:AGI的元认知突破
文章目录 引言:从模式识别到认知革命一、自指学习的理论框架1.1 自指系统的数学定义1.2 认知架构的三重反射1.3 与传统元学习的本质区别二、元认知突破的技术路径2.1 自指神经网络架构2.2 认知效能评价体系2.3 知识表示的革命三、实现突破的关键挑战3.1 认知闭环的稳定性3.2 计…...
排序算法--希尔排序
希尔排序是插入排序的改进版本,适合中等规模数据排序,性能优于简单插入排序。 // 希尔排序函数 void shellSort(int arr[], int n) {// 初始间隔(gap)为数组长度的一半,逐步缩小for (int gap n / 2; gap > 0; gap …...
Java 2024年面试总结(持续更新)
目录 最近趁着金三银四面了五六家公司吧,也整理了一些问题供大家参考一下(适合经验三年左右的)。 面试问题(答案是我自己总结的,不一定正确): 总结: 最近趁着金三银四面了五六家公…...
TensorFlow是个啥玩意?
TensorFlow是一个开源的机器学习框架,由Google开发。它可以帮助开发者构建和训练各种机器学习模型,包括神经网络和深度学习模型。TensorFlow的设计理念是使用数据流图来表示计算过程,其中节点表示数学运算,边表示数据流动。 Tens…...
不可信的搜索路径(CWE-426)
漏洞描述:程序使用关键资源时(如动态链接库、执行文件、配置文件等)没有明确的指定资源的路径,而是依赖操作系统去搜索资源,这种行为可能被攻击者利用,通过在搜索优先级较高的目录放置不良资源,…...
Linux——基础命令
$:普通用户 #:超级用户 cd 切换目录 cd 目录 (进入目录) cd ../ (返回上一级目录) cd ~ (切换到当前用户的家目录) cd - (返回上次目录) pwd 输出当前目…...
利用TensorFlow.js实现浏览器端机器学习:一个全面指南
引言 随着深度学习技术的不断发展,机器学习已从传统的服务器端运算逐渐转向了前端技术。TensorFlow.js 是 Google 推出的一个用于在浏览器中进行机器学习的开源库,它允许开发者在浏览器中直接运行机器学习模型,而无需依赖后端服务器。Tensor…...
利用HTML和css技术编写学校官网页面
目录 一,图例展示 二,代码说明 1,html部分: 【第一张图片】 【第二张图片】 【第三张图片】 2,css部分: 【第一张图片】 【第二张图片】 【第三张图片】 三,程序代码 一,…...
SpringSecurity密码编码器:使用BCrypt算法加密、自定义密码编码器
1、Spring Security 密码编码器 Spring Security 作为一个功能完备的安全性框架,一方面提供用于完成加密操作的 PasswordEncoder 组件,另一方面提供一个可以在应用程序中独立使用的密码模块。 1.1 PasswordEncoder 抽象接口 在 Spring Security 中,PasswordEncoder 接口代…...
笔记:新能源汽车零部件功率级测试怎么进行?
摘要:本文旨在梳理主机厂对新能源汽车核心零部件功率级测试需求,通过试验室的主流设备仪器集成,快速实现试验方案搭建,并体现测试测量方案的时效性、便捷性优势。目标是通过提升实现设备的有效集成能力、实现多设备测试过程的有效协同、流程化测试,可快速采集、分析当前数…...
ES6中的map和原生的对象有什么区别?
在 ES6 中,Map 和原生的对象(Object)都是用来存储键值对数据的集合,但它们有显著的区别。以下是它们之间的主要区别: 1. 键的类型 Object: 只允许使用字符串或符号作为键。其他类型的键(如数字或对象&…...
2502vim,vim文本对象中文文档
介绍 文本块用户(textobj-user)是一个可帮助你毫不费力地创建自己的文本对象的Vim插件. 因为有许多陷阱需要处理,很难创建文本对象.此插件隐藏了此类细节,并提供了声明式定义文本对象的方法. 你可用正则式来定义简单的文本对象,或使用函数来定义复杂的文本对象.如… 文本对…...
spring security与gateway结合进行网关鉴权和授权
在Spring Cloud Gateway中集成Spring Security 6以实现鉴权和认证工作,可以在网关代理层完成权限校验和认证。这种架构通常被称为“边缘安全”或“API网关安全”,它允许你在请求到达后端服务之前进行集中式的安全控制。 以下是如何配置Spring Cloud Gat…...
LabVIEW在电机自动化生产线中的实时数据采集与生产过程监控
在电机自动化生产线中,实时数据采集与生产过程监控是确保生产效率和产品质量的重要环节。LabVIEW作为一种强大的图形化编程平台,可以有效实现数据采集、实时监控和自动化控制。详细探讨如何利用LabVIEW实现这一目标,包括硬件选择、软件架构设…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
腾讯云V3签名
想要接入腾讯云的Api,必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口,但总是卡在签名这一步,最后放弃选择SDK,这次终于自己代码实现。 可能腾讯云翻新了接口文档,现在阅读起来,清晰了很多&…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...
计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...
解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist
现象: android studio报错: [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决: 不要动CMakeLists.…...
人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent
安全大模型训练计划:基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标:为安全大模型创建高质量、去偏、符合伦理的训练数据集,涵盖安全相关任务(如有害内容检测、隐私保护、道德推理等)。 1.1 数据收集 描…...
LOOI机器人的技术实现解析:从手势识别到边缘检测
LOOI机器人作为一款创新的AI硬件产品,通过将智能手机转变为具有情感交互能力的桌面机器人,展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家,我将全面解析LOOI的技术实现架构,特别是其手势识别、物体识别和环境…...
