每日Attention学习19——Convolutional Multi-Focal Attention
每日Attention学习19——Convolutional Multi-Focal Attention
模块出处
[ICLR 25 Submission] [link] UltraLightUNet: Rethinking U-shaped Network with Multi-kernel Lightweight Convolutions for Medical Image Segmentation
模块名称
Convolutional Multi-Focal Attention (CMFA)
模块作用
轻量解码器
模块结构

模块特点
- 使用最大池化与平均池化构建通道注意力
- 使用Channel Max与Channel Average构建空间注意力
- 核心思想与CBAM较为类似,串联通道注意力与空间注意力
模块代码
import torch
import torch.nn as nn
import torch.nn.functional as Fclass SpatialAttention(nn.Module):def __init__(self, kernel_size=7):super(SpatialAttention, self).__init__()assert kernel_size in (3, 7, 11), 'kernel size must be 3 or 7 or 11'padding = kernel_size // 2self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):avg_out = torch.mean(x, dim=1, keepdim=True)max_out, _ = torch.max(x, dim=1, keepdim=True)x = torch.cat([avg_out, max_out], dim=1)x = self.conv(x)return self.sigmoid(x)class ChannelAttention(nn.Module):def __init__(self, in_planes, out_planes=None, ratio=16):super(ChannelAttention, self).__init__()self.in_planes = in_planesself.out_planes = out_planesif self.in_planes < ratio:ratio = self.in_planesself.reduced_channels = self.in_planes // ratioif self.out_planes == None:self.out_planes = in_planesself.avg_pool = nn.AdaptiveAvgPool2d(1)self.max_pool = nn.AdaptiveMaxPool2d(1)self.activation = nn.ReLU(inplace=True)self.fc1 = nn.Conv2d(in_planes, self.reduced_channels, 1, bias=False)self.fc2 = nn.Conv2d(self.reduced_channels, self.out_planes, 1, bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):avg_pool_out = self.avg_pool(x) avg_out = self.fc2(self.activation(self.fc1(avg_pool_out)))max_pool_out= self.max_pool(x)max_out = self.fc2(self.activation(self.fc1(max_pool_out)))out = avg_out + max_outreturn self.sigmoid(out) class CMFA(nn.Module):def __init__(self, in_planes, out_planes=None,):super(CMFA, self).__init__()self.ca = ChannelAttention(in_planes=64, out_planes=64)self.sa = SpatialAttention()def forward(self, x):x = x*self.ca(x)x = x*self.sa(x)return xif __name__ == '__main__':x = torch.randn([1, 64, 44, 44])cmfa = CMFA(in_planes=64, out_planes=64)out = cmfa(x)print(out.shape) # [1, 64, 44, 44]
相关文章:
每日Attention学习19——Convolutional Multi-Focal Attention
每日Attention学习19——Convolutional Multi-Focal Attention 模块出处 [ICLR 25 Submission] [link] UltraLightUNet: Rethinking U-shaped Network with Multi-kernel Lightweight Convolutions for Medical Image Segmentation 模块名称 Convolutional Multi-Focal Atte…...
LeetCode题练习与总结:三个数的最大乘积--628
一、题目描述 给你一个整型数组 nums ,在数组中找出由三个数组成的最大乘积,并输出这个乘积。 示例 1: 输入:nums [1,2,3] 输出:6示例 2: 输入:nums [1,2,3,4] 输出:24示例 3&a…...
Colorful/七彩虹 隐星P15 TA 24 原厂Win11 家庭版系统 带F9 Colorful一键恢复功能
Colorful/七彩虹 隐星P15 TA 24 原厂Win11 家庭中文版系统 带F9 Colorful一键恢复功能 自动重建COLORFUL RECOVERY功能 带所有随机软件和机型专用驱动 支持机型:隐星P15 TA 24 文件下载:asusoem.cn/745.html 文件格式:ISO 系统版本&…...
第二篇:多模态技术突破——DeepSeek如何重构AI的感知与认知边界
——从跨模态对齐到因果推理的工程化实践 在AI技术从单一模态向多模态跃迁的关键阶段,DeepSeek通过自研的多模态融合框架,在视觉-语言-语音的联合理解与生成领域实现系统性突破。本文将从技术实现层面,解构其跨模态表征学习、动态融合机制与…...
CTreeCtrl 设置图标
mfc界面修改真难受 使用CTreeCtrl 进行设置导航视图时,有时候需要设置图标,一般使用如下代码 m_TreeViewImages.DeleteImageList();UINT uiBmpId IDB_ICONLIST_TREE;CBitmap bmp; if (!bmp.LoadBitmap(uiBmpId)) return;BITMAP bmpObj; bmp.GetBitmap…...
在JAX-RS中获取请求头信息的方法
在JAX-RS中获取请求头信息的方法 HeaderParam注解,可以直接将请求头中的特定值注入到方法参数中,代码示例: import javax.ws.rs.GET; import javax.ws.rs.HeaderParam; import javax.ws.rs.Path; import javax.ws.rs.core.Response;Path(&q…...
Java 面试之结束问答
技术优化 线程池优化 设置最大线程数设置最小核心线程数设置额外线程存活时间选择线程池队列选择合适的线程池选择合适的饱和策略 锁优化 尽量不要锁住方法缩小同步代码块,只锁数据锁中尽量不要再包含锁将锁私有化,在内部管理锁进行适当的锁分解 HT…...
柔性数组与c/c++程序中内存区域的划分
1.柔性数组 1.1柔性数组的定义 柔性数组是指在结构体中定义的,其大小在编译时未确定,而在运行时动态分配的数组。这种数组允许结构体的大小根据需要动态变化。语法如下: struct D {int a;int arry1[0]; };struct F {int a;int arry2[]; };…...
mini-lsm通关笔记Week2Day7
项目地址:https://github.com/skyzh/mini-lsm 个人实现地址:https://gitee.com/cnyuyang/mini-lsm 在上一章中,您已经构建了一个完整的基于LSM的存储引擎。在本周末,我们将实现存储引擎的一些简单但重要的优化。欢迎来到Mini-LSM的…...
Typora免费使用
一.下载地址 https://typoraio.cn/ 二.修改配置文件 1.找到安装路径下的LicenseIndex.180dd4c7.4da8909c.chunk.js文件 文件路径为:安装路径\resources\page-dist\static\js\LicenseIndex.180dd4c7.4da8909c.chunk.js 将js中的 e.hasActivated"true"e.hasActiva…...
AI驱动的无线定位:基础、标准、最新进展与挑战
1. 论文概述 研究目标:本论文旨在综述AI在无线定位领域的应用,包括其基础理论、标准化进展、最新技术发展,以及面临的挑战和未来研究方向。主要发现: AI/ML 技术已成为提升无线定位精度和鲁棒性的关键手段,特别是在 3GPP 标准的推动下。论文系统性地分析了 AI 在 LOS/NLOS…...
苹果再度砍掉AR眼镜项目?AR真的是伪风口吗?
曾经,AR游戏一度异常火热,宝可梦go让多少人不惜翻墙都要去玩,但是也没过去几年,苹果被曝出再度砍掉了AR眼镜项目,面对着市场的变化,让人不禁想问AR真的是伪风口吗? 一、苹果再度砍掉AR眼镜项目&…...
18 大量数据的异步查询方案
在分布式的应用中分库分表大家都已经熟知了。如果我们的程序中需要做一个模糊查询,那就涉及到跨库搜索的情况,这个时候需要看中间件能不能支持跨库求交集的功能。比如mycat就不支持跨库查询,当然现在mycat也渐渐被摒弃了(没有处理笛卡尔交集的…...
DRM系列八:Drm之DRM_IOCTL_MODE_ADDFB2
本系列文章基于linux 5.15 在上一篇文章DRM系列七:Drm之DRM_IOCTL_MODE_CREATE_DUMB获取buf的handle和pitch之后,接着使用ioctl(fd, DRM_IOCTL_MODE_ADDFB2, &fb_cmd)创建一个新的帧缓冲区对象(framebuffer object),并将帧缓冲区对象与显…...
软件测试用例篇
设计测试用例是测试面试的必考题,务必好好学 1. 测试用例 测试用例的概念 测试⽤例(Test Case)是为了实施测试而向被测试的系统提供的⼀组集合,这组集合包含:测试环境、操作步骤、测试数据、预期结果等要素。 设计测试⽤…...
PopupMenuButton组件的功能和用法
文章目录 1 概念介绍2 使用方法3 示例代码 我们在上一章回中介绍了Sliver综合示例相关的内容,本章回中将介绍PopupMenuButton组件.闲话休提,让我们一起Talk Flutter吧。 1 概念介绍 我们在本章回中介绍的PopupMenuButton组件位于AppBar右侧,…...
Python进行模型优化与调参
在数据科学与机器学习领域,模型的优化与调参是提高模型性能的重要步骤之一。模型优化可以帮助提高模型的准确性和泛化能力,而合理的调参则能够充分发挥模型的潜力。这篇教程将重点介绍几种常用的模型优化与调参方法,特别是超参数调整和正则化技术的应用。这些技术能够有效地…...
vue2-组件通信
文章目录 vue2-组件通信1. 为什么需要组件通信2. props传递数据3. $emit触发自定义事件4.ref5. EventBus6. p a r e n t 和 parent和 parent和root7. a t t r s 和 attrs和 attrs和listeners8. provide和inject9. vuex10. 总结 vue2-组件通信 1. 为什么需要组件通信 在VUE中…...
20250205确认荣品RK3566开发板在Android13下可以使用命令行reboot -p关机
20250205确认荣品RK3566开发板在Android13下可以使用命令行reboot -p关机 2025/2/5 16:10 缘起:荣品RK3566开发板在Android13下,希望通过Native C语言程序来控制RK3566的关机。 通过ADB,很容易通过reboot -p命令关机。 最开始以为需要su/root…...
设计模式---观察者模式
设计模式—观察者模式 定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新。 主要解决的问题:一个对象状态改变给其他对象通知的问题,而且要考虑到易用和低耦合,…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...
逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...
