SQL范式与反范式_优化数据库性能
1. 引言
什么是SQL范式
SQL范式是指数据库设计中的一系列规则和标准,旨在减少数据冗余、提高数据完整性和一致性。常见的范式包括第一范式(1NF)、第二范式(2NF)、第三范式(3NF)和BCNF(Boyce-Codd范式)。
什么是SQL反范式
SQL反范式是指在满足范式要求的基础上,有意引入数据冗余以提高查询性能。反范式通常用于读取密集型的应用场景,以减少查询时的连接操作,提高查询效率。
为什么需要优化数据库性能
数据库性能优化是确保应用程序高效运行的关键。通过优化数据库性能,可以减少响应时间、提高吞吐量、降低资源消耗,从而提升用户体验和系统稳定性。
2. SQL范式
2.1 第一范式(1NF)
- 定义:每个表中的每一列都必须包含原子值,即不可再分的数据项;每个记录必须是唯一的。
- 示例:
CREATE TABLE Students (StudentID INT PRIMARY KEY,Name VARCHAR(100),Age INT );
2.2 第二范式(2NF)
- 定义:满足1NF,并且所有非主键列都完全依赖于主键。
- 示例:
CREATE TABLE Orders (OrderID INT PRIMARY KEY,StudentID INT,OrderDate DATE,FOREIGN KEY (StudentID) REFERENCES Students(StudentID) );
2.3 第三范式(3NF)
- 定义:满足2NF,并且所有非主键列都只依赖于主键,不依赖于其他非主键列。
- 示例:
CREATE TABLE Courses (CourseID INT PRIMARY KEY,CourseName VARCHAR(100),Credits INT );CREATE TABLE Enrollments (EnrollmentID INT PRIMARY KEY,StudentID INT,CourseID INT,Grade CHAR(2),FOREIGN KEY (StudentID) REFERENCES Students(StudentID),FOREIGN KEY (CourseID) REFERENCES Courses(CourseID) );
2.4 BCNF(Boyce-Codd范式)
- 定义:满足3NF,并且每个决定因素都是候选键。
- 示例:
CREATE TABLE Departments (DeptID INT PRIMARY KEY,DeptName VARCHAR(100),Location VARCHAR(100) );CREATE TABLE Employees (EmpID INT PRIMARY KEY,EmpName VARCHAR(100),DeptID INT,FOREIGN KEY (DeptID) REFERENCES Departments(DeptID) );
2.5 范式的优点
- 数据完整性:减少数据冗余,确保数据的一致性。
- 数据一致性:通过规范化减少数据不一致的可能性。
3. SQL反范式
3.1 反范式的定义
- 定义:在满足范式要求的基础上,有意引入数据冗余以提高查询性能。
- 为什么需要反范式:在读取密集型的应用场景中,减少查询时的连接操作,提高查询效率。
3.2 反范式的应用场景
- 读取优化:减少查询时的连接操作,提高查询速度。
- 性能提升:在高并发读取场景中,减少数据库负载。
3.3 反范式的常见模式
- 数据冗余:在多个表中存储相同的数据。
- 预先计算:预先计算并存储结果,减少实时计算。
- 物化视图:创建物化视图以存储查询结果。
4. 范式与反范式的对比
4.1 数据完整性与一致性
- 范式:通过规范化减少数据冗余,确保数据的一致性和完整性。
- 反范式:引入数据冗余,可能导致数据不一致,需要额外的机制来维护一致性。
4.2 性能与效率
- 范式:在写操作时性能较好,但在读操作时可能需要多次连接,性能较差。
- 反范式:在读操作时性能较好,但在写操作时可能需要更新多个地方,性能较差。
4.3 复杂性与维护成本
- 范式:设计和维护相对复杂,但数据一致性较高。
- 反范式:设计和维护相对简单,但需要处理数据冗余和一致性问题。
4.4 SQL示例
-
范式示例:
-- 创建学生表 CREATE TABLE Students (
相关文章:
SQL范式与反范式_优化数据库性能
1. 引言 什么是SQL范式 SQL范式是指数据库设计中的一系列规则和标准,旨在减少数据冗余、提高数据完整性和一致性。常见的范式包括第一范式(1NF)、第二范式(2NF)、第三范式(3NF)和BCNF(Boyce-Codd范式)。 什么是SQL反范式 SQL反范式是指在满足范式要求的基础上,有…...
从BIO到NIO:Java IO的进化之路
引言 在 Java 编程的世界里,输入输出(I/O)操作是基石般的存在,从文件的读取写入,到网络通信的数据传输,I/O 操作贯穿于各种应用程序的核心。BIO(Blocking I/O,阻塞式 I/O࿰…...
Mysql:数据库
Mysql 一、数据库概念?二、MySQL架构三、SQL语句分类四、数据库操作4.1 数据库创建4.2 数据库字符集和校验规则4.3 数据库修改4.4 数据库删除4.4 数据库备份和恢复其他 五、表操作5.1 创建表5.2 修改表5.3 删除表 六、表的增删改查6.1 Create(创建):数据新增1&#…...
深度学习系列--01.入门
一.深度学习概念 深度学习(Deep Learning)是机器学习的分支,是指使用多层的神经网络进行机器学习的一种手法抖音百科。它学习样本数据的内在规律和表示层次,最终目标是让机器能够像人一样具有分析学习能力,能够识别文字…...
【Elasticsearch】`auto_date_histogram`聚合功能详解
1.功能概述 auto_date_histogram是 Elasticsearch 提供的一种时间分桶聚合功能,它可以根据数据分布自动调整分桶的间隔,以生成指定数量的分桶。与传统的date_histogram不同,auto_date_histogram不需要用户手动指定时间间隔,而是根…...
php7.3安装php7.3-gmp扩展踩坑总结
环境: 容器里面为php7.3.3版本 服务器也为php7.3.3-14版本,但是因为业务量太大需要在服务器里面跑脚本 容器里面为 alpine 系统,安装各种扩展 服务器里面开发服为 ubuntu 16.04.7 LTS (Xenial Xerus) 系统 服务器线上为 ubuntu 20.04.6 LTS (…...
7. k8s二进制集群之Kube ApiServer部署
创建kube工作目录(仅在主节点上创建即可)同样在我们的部署主机上创建apiserver证书请求文件根据证书文件生成apiserver证书仅接着创建TLS所需要的TOKEN创建apiserver服务的配置文件(仅在主节点上创建即可)创建apiserver服务管理配置文件对所有master节点分发证书 & TOK…...
QT笔记——多语言翻译
文章目录 1、概要2、多语言切换2.1、结果展示2.2、创建项目2.2、绘制UI2.2、生成“.st”文件2.4、生成“.qm”文件2.5、工程demo 1、概要 借助QT自带的翻译功能,实现实际应用用进行 “多语言切换” 2、多语言切换 2.1、结果展示 多语言切换 2.2、创建项目 1、文件…...
【2025】camunda API接口介绍以及REST接口使用(3)
前言 在前面的两篇文章我们介绍了Camunda的web端和camunda-modeler的使用。这篇文章主要介绍camunda结合springboot进行使用,以及相关api介绍。 该专栏主要为介绍camunda的学习和使用 🍅【2024】Camunda常用功能基本详细介绍和使用-下(1&…...
js面试some和every的区别
1.基础使用 some和every 都是数组的一个方法let num [1,2,3,4,5,6] let flag1 num.some((item,index,array)> item > 2)let flag2 num.every((item,index, array)> item > 2)1.some 遍历判断中是符合条件的值 一旦找到则不会继续迭代下去 直接返回 2.every 遍历…...
Vue 中如何嵌入可浮动的第三方网页窗口(附Demo)
目录 前言1. 思路Demo2. 实战Demo 前言 🤟 找工作,来万码优才:👉 #小程序://万码优才/r6rqmzDaXpYkJZF 1. 思路Demo 以下Demo提供思路参考,需要结合实际自身应用代码 下述URL的链接使用百度替代! 方式 1…...
【大数据技术】词频统计样例(hadoop+mapreduce+yarn)
词频统计(hadoop+mapreduce+yarn) 搭建完全分布式高可用大数据集群(VMware+CentOS+FinalShell) 搭建完全分布式高可用大数据集群(Hadoop+MapReduce+Yarn) 在阅读本文前,请确保已经阅读过以上两篇文章,成功搭建了Hadoop+MapReduce+Yarn的大数据集群环境。 写在前面 Wo…...
java进阶知识点
java回收机制 浅谈java中的反射 依赖注入的简单理解 通过接口的引用和构造方法的表达,将一些事情整好了反过来传给需要用到的地方~ 这样做得好处:做到了单一职责,并且提高了复用性,解耦了之后,任你如何实现…...
深度学习系列--02.损失函数
一.定义 损失函数(Loss Function)是机器学习和深度学习中用于衡量模型预测结果与真实标签之间差异的函数,它在模型训练和评估过程中起着至关重要的作用 二.作用 1.指导模型训练 提供优化方向:在训练模型时,我们的目…...
构建一个数据分析Agent:提升分析效率的实践
在上一篇文章中,我们讨论了如何构建一个智能客服Agent。今天,我想分享另一个实际项目:如何构建一个数据分析Agent。这个项目源于我们一个金融客户的真实需求 - 提升数据分析效率,加快决策速度。 从分析师的痛点说起 记得和分析师团队交流时的场景: 小张ÿ…...
在K8S中,如何把某个worker节点设置为不可调度?
在Kubernetes中,如果你想要把一个worker节点设置为不可调度,意味着你不想让Kubernetes调度器在这个节点上调度新的Pod。这通常用于维护或升级节点,或者当节点遇到硬件故障或性能问题时,要将某个worker节点设置为不可调度。 方法1…...
硬件电路基础
目录 1. 电学基础 1.1 原子 1.2 电压 1.3 电流 1.电流方向: 正极->负极,正电荷定向移动方向为电流方向,与电子定向移动方向相反。 2.电荷(这里表示负电荷)运动方向: 与电流方向相反 1.4 测电压的时候 2. 地线…...
5 前端系统开发:Vue2、Vue3框架(上):Vue入门式开发和Ajax技术
文章目录 前言一、Vue框架(简化DOM操作的一个前端框架):基础入门1 Vue基本概念2 快速入门:创建Vue实例,初始化渲染(1)创建一个入门Vue实例(2)插值表达式:{{表…...
阿里 Java 岗个人面经分享(技术三面 + 技术 HR 面):Java 基础 +Spring+JVM+ 并发编程 + 算法 + 缓存
技术一面 20 分钟 1、自我介绍 说了很多遍了,很流畅捡重点介绍完。 2、问我数据结构算法好不好 挺好的(其实心还是有点虚,不过最近刷了很多题也只能壮着胆子充胖子了) 3、找到单链表的三等分点,如果单链表是有环的…...
vue2-给data动态添加属性
vue2-给data动态添加属性 1. 问题的来源 在VUe2中(VUE3中使用了proxy,及时动态添加也能实现响应式),如果我们动态给data添加一个属性,会发现视图没有同步更新举个例子我们通过v-for遍历data中的一个属性list…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...
2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面
代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
Rust 开发环境搭建
环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行: rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu 2、Hello World fn main() { println…...
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
如何应对敏捷转型中的团队阻力
应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中,明确沟通敏捷转型目的尤为关键,团队成员只有清晰理解转型背后的原因和利益,才能降低对变化的…...
9-Oracle 23 ai Vector Search 特性 知识准备
很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...
比较数据迁移后MySQL数据库和ClickHouse数据仓库中的表
设计一个MySQL数据库和Clickhouse数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...
