当前位置: 首页 > news >正文

深度学习系列--02.损失函数

一.定义

损失函数(Loss Function)是机器学习和深度学习中用于衡量模型预测结果与真实标签之间差异的函数,它在模型训练和评估过程中起着至关重要的作用

二.作用

1.指导模型训练

  • 提供优化方向:在训练模型时,我们的目标是调整模型的参数,使模型的预测结果尽可能接近真实结果。损失函数通过计算预测值与真实值之间的差异,为模型参数的调整提供了方向。例如在梯度下降算法中,会根据损失函数对参数的梯度来更新参数,使得损失函数的值逐渐减小,即模型朝着预测结果更准确的方向优化。
  • 确定训练停止条件:训练过程通常会持续进行,直到损失函数的值收敛到一个较小的值或者达到预设的训练轮数等条件。损失函数的值可以作为判断模型是否已经训练好的一个重要依据。当损失函数不再明显下降时,我们可以认为模型已经达到了一个相对较好的状态,此时可以停止训练,防止过拟合等问题。

2.评估模型性能 

  • 衡量模型优劣:在模型训练完成后,需要对模型的性能进行评估。损失函数的值可以直观地反映模型在测试数据集上的表现。损失函数值越小,说明模型的预测结果与真实值越接近,模型的性能也就越好。通过比较不同模型在相同数据集上的损失函数值,我们可以选择出性能最优的模型。
  • 比较不同算法和参数设置:在尝试不同的机器学习算法或对同一算法使用不同的参数设置时,损失函数可以帮助我们评估哪种算法或参数设置更优。例如在选择线性回归模型的正则化参数时,可以通过比较不同参数下模型的损失函数值,找到使损失最小的参数值,从而确定最优的模型配置

常见的损失函数包括均方误差(MSE)、交叉熵损失函数、绝对值损失函数等,不同的损失函数适用于不同的任务和数据类型,例如回归任务常用 MSE,分类任务常用交叉熵损失函数。 

三.损失函数是如何指导模型训练的 

  以下以简单的线性回归模型和均方误差损失函数为例,说明损失函数是如何指导模型训练的:

  假设我们有一组数据点(Xi,Yi),其中Xi是输入特征,Yi是对应的真实输出值,我们想要训练一个线性回归模型 y = wx + b 来拟合这些数据,这里w是权重,b是偏置。我们选择均方误差(MSE)作为损失函数,其计算公式为:

其中 y^i = wxi + b 是模型的预测值,是数据点的数量。 

训练过程如下:

  1. 随机初始化参数
    首先,随机初始化权重和偏置的值,例如w=0.5,b=0.2。此时模型的预测结果可能与真实值相差较大,损失函数的值也会比较大。

     2. 计算损失值

     3.计算梯度
接下来,需要计算损失函数对权重和偏置的梯度。根据求导公式可得:

     4. 更新参数

      5.重复迭代

重复步骤 2 到步骤 4,不断计算损失值、梯度,并更新参数。随着迭代的进行,损失函数的值会逐渐减小,模型的预测结果会越来越接近真实值。例如,经过多次迭代后,假设,,此时重新计算损失值:

此时损失函数值为 0,说明模型已经完美拟合了这组数据(在实际情况中,损失函数值通常不会恰好为 0,但会趋近于一个较小的值)。

  通过以上过程可以看出,损失函数通过计算预测值与真实值的差异,得到损失值,并通过计算梯度为模型参数的更新提供方向,使得模型在训练过程中不断调整参数,以减小损失函数的值,从而逐渐提高模型的准确性。

 四.常见的损失函数

1. 分类任务

 交叉熵损失函数(Cross-Entropy Loss)

 对数损失函数(Log Loss)

 Hinge 损失函数

2. 回归任务

平均绝对误差损失函数(Mean Absolute Error, MAE) 

 平均绝对百分比误差损失函数(Mean Absolute Percentage Error, MAPE)

Huber 损失函数 

 3.其他

相关文章:

深度学习系列--02.损失函数

一.定义 损失函数(Loss Function)是机器学习和深度学习中用于衡量模型预测结果与真实标签之间差异的函数,它在模型训练和评估过程中起着至关重要的作用 二.作用 1.指导模型训练 提供优化方向:在训练模型时,我们的目…...

构建一个数据分析Agent:提升分析效率的实践

在上一篇文章中,我们讨论了如何构建一个智能客服Agent。今天,我想分享另一个实际项目:如何构建一个数据分析Agent。这个项目源于我们一个金融客户的真实需求 - 提升数据分析效率,加快决策速度。 从分析师的痛点说起 记得和分析师团队交流时的场景: 小张&#xff…...

在K8S中,如何把某个worker节点设置为不可调度?

在Kubernetes中,如果你想要把一个worker节点设置为不可调度,意味着你不想让Kubernetes调度器在这个节点上调度新的Pod。这通常用于维护或升级节点,或者当节点遇到硬件故障或性能问题时,要将某个worker节点设置为不可调度。 方法1…...

硬件电路基础

目录 1. 电学基础 1.1 原子 1.2 电压 1.3 电流 1.电流方向: 正极->负极,正电荷定向移动方向为电流方向,与电子定向移动方向相反。 2.电荷(这里表示负电荷)运动方向: 与电流方向相反 1.4 测电压的时候 2. 地线…...

5 前端系统开发:Vue2、Vue3框架(上):Vue入门式开发和Ajax技术

文章目录 前言一、Vue框架(简化DOM操作的一个前端框架):基础入门1 Vue基本概念2 快速入门:创建Vue实例,初始化渲染(1)创建一个入门Vue实例(2)插值表达式:{{表…...

阿里 Java 岗个人面经分享(技术三面 + 技术 HR 面):Java 基础 +Spring+JVM+ 并发编程 + 算法 + 缓存

技术一面 20 分钟 1、自我介绍 说了很多遍了,很流畅捡重点介绍完。 2、问我数据结构算法好不好 挺好的(其实心还是有点虚,不过最近刷了很多题也只能壮着胆子充胖子了) 3、找到单链表的三等分点,如果单链表是有环的…...

vue2-给data动态添加属性

vue2-给data动态添加属性 1. 问题的来源 在VUe2中(VUE3中使用了proxy,及时动态添加也能实现响应式),如果我们动态给data添加一个属性,会发现视图没有同步更新举个例子我们通过v-for遍历data中的一个属性list&#xf…...

Linux 文件和目录

Linux 文件和目录 文章目录 Linux 文件和目录Linux 目录Linux 目录配置的依据 --FHS目录树文件属性文件的分类一般权限 UGO特殊权限 suid\sgid\sticky隐藏属性 ATTR文件访问控制列表 ACL文件相关的命令权限的修改 chmod chown chgrp umaskchmodchgrpumask相关文档 /etc/profile…...

【大数据技术】本机DataGrip远程连接虚拟机MySQL/Hive

本机DataGrip远程连接虚拟机MySQL/Hive datagrip-2024.3.4VMware Workstation Pro 16CentOS-Stream-10-latest-x86_64-dvd1.iso写在前面 本文主要介绍如何使用本机的DataGrip连接虚拟机的MySQL数据库和Hive数据库,提高编程效率。 安装DataGrip 请按照以下步骤安装DataGrip软…...

Leetcode 3440. Reschedule Meetings for Maximum Free Time II

Leetcode 3440. Reschedule Meetings for Maximum Free Time II 1. 解题思路2. 代码实现 题目链接:3440. Reschedule Meetings for Maximum Free Time II 1. 解题思路 这一题某种意义上来说甚至是上一题Leetcode 3439的简化版本(关于这一题的解答可以…...

专门记录台式电脑常见问题

1、蓝屏死机,检查内存硬盘和cpu 2、拆内存条,用橡皮擦金手指 3、放主板静电,扣主板电池 4、系统时间不正确,主板电池没电 5、开机键坏了 6、电脑主机的风扇转,正常通电运行,但显示器没信号。看键盘的num键&…...

[操作系统] 进程终止

在计算机操作系统中,进程(Process)是程序在运行中的实例,而进程的生命周期始于创建,终于终止。进程终止不仅仅意味着程序执行结束,还涉及资源的回收、状态的传递、以及可能的错误处理。在 Linux 和 Unix 系…...

[x86 ubuntu22.04]进入S4失败

目录 1 问题描述 2 解决过程 2.1 查看内核日志 2.2 新建一个交换分区 2.3 指定交换分区的位置 1 问题描述 CPU:G6900E OS:ubuntu22.04 Kernel:6.8.0-49-generic 使用“echo disk > /sys/power/state”命令进入 S4,但是无法…...

12.外观模式(Facade Pattern)

定义 外观模式(Facade Pattern) 是一种结构型设计模式,它通过为复杂的子系统提供一个统一的接口,使得子系统的使用更加简化。外观模式通常隐藏了复杂的内部子系统,使得客户端可以通过一个简单的接口与这些子系统进行交…...

ES6 入门教程:箭头函数、解构赋值及其他新特性详解

ES6 入门教程:箭头函数、解构赋值及其他新特性详解 ES6 入门教程:箭头函数、解构赋值及其他新特性详解引言什么是 ES6?箭头函数(Arrow Functions)1. 基本语法2. 常见特点(1)没有自己的 this 上下…...

win编译openssl

一、perl执行脚本 1、安装perl脚本 perl安装 2、配置perl脚本 perl Configure VC-WIN32 no-asm no-shared --prefixE:\openssl-x.x.x\install二、编译openssl 1、使用vs工具编译nmake 如果使用命令行nmake编译会提示“无法打开包括文件: “limits.h”“ 等错误信息 所以…...

51单片机看门狗系统

在 STC89C52 单片机中,看门狗控制寄存器的固定地址为 0xE1。此地址由芯片厂商在硬件设计时确定,但是它在头文件中并未给出,因此在使用看门狗系统时需要声明下这个特殊功能寄存器 sfr WDT_CONTR 0xE1; 本案将用一个小灯的工作状况来展示看门…...

探索 paraphrase-MiniLM-L6-v2 模型在自然语言处理中的应用

在自然语言处理(NLP)领域,将文本数据转换为机器学习模型可以处理的格式是至关重要的。近年来,sentence-transformers 库因其在文本嵌入方面的卓越表现而受到广泛关注。本文将深入探讨 paraphrase-MiniLM-L6-v2 模型,这…...

2025最新软件测试面试大全(附答案+文档)

🍅 点击文末小卡片 ,免费获取软件测试全套资料,资料在手,涨薪更快 1、问:你在测试中发现了一个bug,但是开发经理认为这不是一个bug,你应该怎样解决? 首先,将问题提交到缺陷管理库里…...

Java语法进阶

目录: Object类、常用APICollection、泛型List、Set、数据结构、CollectionsMap与斗地主案例异常、线程线程、同步等待与唤醒案例、线程池、Lambda表达式File类、递归字节流、字符流缓冲流、转换流、序列化流、Files网络编程 十二、函数式接口Stream流、方法引用 一…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

Golang——9、反射和文件操作

反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...

Ubuntu系统复制(U盘-电脑硬盘)

所需环境 电脑自带硬盘:1块 (1T) U盘1:Ubuntu系统引导盘(用于“U盘2”复制到“电脑自带硬盘”) U盘2:Ubuntu系统盘(1T,用于被复制) !!!建议“电脑…...

使用SSE解决获取状态不一致问题

使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件,这个上传文件是整体功能的一部分,文件在上传的过程中…...

STM32标准库-ADC数模转换器

文章目录 一、ADC1.1简介1. 2逐次逼近型ADC1.3ADC框图1.4ADC基本结构1.4.1 信号 “上车点”:输入模块(GPIO、温度、V_REFINT)1.4.2 信号 “调度站”:多路开关1.4.3 信号 “加工厂”:ADC 转换器(规则组 注入…...

前端工具库lodash与lodash-es区别详解

lodash 和 lodash-es 是同一工具库的两个不同版本,核心功能完全一致,主要区别在于模块化格式和优化方式,适合不同的开发环境。以下是详细对比: 1. 模块化格式 lodash 使用 CommonJS 模块格式(require/module.exports&a…...

python基础语法Ⅰ

python基础语法Ⅰ 常量和表达式变量是什么变量的语法1.定义变量使用变量 变量的类型1.整数2.浮点数(小数)3.字符串4.布尔5.其他 动态类型特征注释注释是什么注释的语法1.行注释2.文档字符串 注释的规范 常量和表达式 我们可以把python当作一个计算器,来进行一些算术…...