从Transformer到世界模型:AGI核心架构演进
文章目录
- 引言:架构革命推动AGI进化
- 一、Transformer:重新定义序列建模
- 1.1 注意力机制的革命性突破
- 1.2 从NLP到跨模态演进
- 1.3 规模扩展的黄金定律
- 二、通向世界模型的关键跃迁
- 2.1 从语言模型到认知架构
- 2.2 世界模型的核心特征
- 2.3 混合架构的突破
- 三、构建世界模型的技术路径
- 3.1 多模态统一表示
- 3.2 分层时序建模
- 3.3 基于物理的推理引擎
- 四、技术挑战与突破方向
- 4.1 核心挑战矩阵
- 4.2 突破性技术方向
- 五、AGI架构的未来图景
- 5.1 认知架构的三层设计
- 5.2 关键里程碑预测
- 结语:站在新范式的前夜

引言:架构革命推动AGI进化
在通往通用人工智能(AGI)的道路上,算法架构的演进始终扮演着核心驱动力的角色。从2017年Transformer架构的横空出世,到近期世界模型(World Model)概念的突破性进展,我们正在见证一场静默但深刻的认知革命。这场革命不仅重新定义了神经网络的处理范式,更在本质上改变了AI系统理解世界的方式。
一、Transformer:重新定义序列建模
1.1 注意力机制的革命性突破
Transformer架构的核心创新在于其完全基于注意力机制的设计:
class MultiHeadAttention(nn.Module):def __init__(self, d_model, num_heads):super().__init__()self.d_model = d_modelself.num_heads = num_headsself.head_dim = d_model // num_heads# 线性变换矩阵self.W_q = nn.Linear(d_model, d_model)self.W_k = nn.Linear(d_model, d_model)self.W_v = nn.Linear(d_model, d_model)self.W_o = nn.Linear(d_model, d_model)def scaled_dot_product_attention(self, Q, K, V, mask=None):# 计算注意力得分attn_scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.head_dim)# 应用softmaxattn_probs = F.softmax(attn_scores, dim=-1)# 与Value相乘output = torch.matmul(attn_probs, V)return output
这种设计突破了RNN的顺序计算限制,使得模型可以:
- 实现O(1)级的序列信息传递
- 建立任意位置间的直接关联
- 并行处理整个输入序列
1.2 从NLP到跨模态演进
Transformer的应用已超越自然语言处理:
应用领域 | 典型模型 | 核心创新 |
---|---|---|
计算机视觉 | Vision Transformer | 图像分块编码 |
语音识别 | Conformer | CNN+Transformer混合架构 |
蛋白质结构预测 | AlphaFold2 | 几何注意力机制 |
1.3 规模扩展的黄金定律
Transformer展现出的scaling law揭示出惊人规律:
L ( N , D ) = ( N crit N ) α N + ( D crit D ) α D L(N,D) = \left( \frac{N_{\text{crit}}}{N} \right)^{\alpha_N} + \left( \frac{D_{\text{crit}}}{D} \right)^{\alpha_D} L(N,D)=(NNcrit)αN+(DDcrit)αD
其中N是参数量,D是训练数据量。这为后续的大模型发展提供了明确的方向指引。
二、通向世界模型的关键跃迁
2.1 从语言模型到认知架构
新一代模型正在突破单纯的语言建模:
- GPT-4:实现多模态输入和代码执行
- Gato:统一策略网络处理多样化任务
- PaLM-E:具身推理与物理世界交互
2.2 世界模型的核心特征
真正意义上的世界模型应具备:
- 状态空间建模:构建可推理的隐式状态表示
- 因果推理能力:理解事件间的因果关系链
- 反事实预测:对未发生情景的模拟推演
- 多尺度建模:从微观物理规则到宏观社会规律
2.3 混合架构的突破
前沿研究展示出多种技术路线的融合:
三、构建世界模型的技术路径
3.1 多模态统一表示
实现跨模态的语义对齐:
class MultimodalEncoder(nn.Module):def __init__(self):super().__init__()self.text_encoder = Transformer()self.image_encoder = ViT()self.audio_encoder = AudioSpectrogramTransformer()def forward(self, inputs):# 模态对齐投影text_emb = self.text_encoder(inputs['text'])image_emb = self.image_encoder(inputs['image'])audio_emb = self.audio_encoder(inputs['audio'])# 共享语义空间unified_emb = torch.cat([text_emb, image_emb, audio_emb], dim=1)return unified_emb
3.2 分层时序建模
结合不同时间尺度的预测:
时间尺度 | 建模方法 | 应用场景 |
---|---|---|
毫秒级 | 微分方程神经网络 | 物理仿真 |
秒级 | Transformer | 对话交互 |
小时级 | 记忆网络 | 长期规划 |
天级 | 图神经网络 | 社会关系演化 |
3.3 基于物理的推理引擎
将基础物理规则编码到神经网络中:
∂ h ∂ t = f θ ( h , ∇ h , ∇ 2 h ) \frac{\partial h}{\partial t} = f_{\theta}(h, \nabla h, \nabla^2 h) ∂t∂h=fθ(h,∇h,∇2h)
这种神经微分方程能够自动保持物理守恒律。
四、技术挑战与突破方向
4.1 核心挑战矩阵
挑战维度 | 具体问题 | 当前进展 |
---|---|---|
计算效率 | 三维时空建模的复杂度爆炸 | 稀疏注意力机制 |
知识表示 | 显式知识与隐式表示的融合 | 神经符号系统 |
因果推理 | 反事实推理的可控性 | do-calculus框架集成 |
安全对齐 | 目标函数与人类价值观的对齐 | Constitutional AI |
4.2 突破性技术方向
- 神经编译技术:将物理定律编译为可微分操作
- 动态课程学习:自主生成渐进式训练课程
- 元认知架构:系统层面的自我监控与优化
- 量子-经典混合架构:利用量子计算处理高维状态空间
五、AGI架构的未来图景
5.1 认知架构的三层设计
+-----------------------+
| 元认知层 | 自我反思、目标生成
+-----------------------+
| 世界模型层 | 状态推理、因果建模
+-----------------------+
| 感知运动层 | 多模态处理、具身交互
+-----------------------+
5.2 关键里程碑预测
- 2025年:实现开放环境的长期规划能力
- 2028年:通过图灵测试的具身智能体
- 2030年:具备科学发现能力的AI系统
- 2035年:通用人工智能初步实现
结语:站在新范式的前夜
当前,我们正处在AGI架构范式转换的关键转折点。从Transformer到世界模型的演进,不仅是技术栈的迭代升级,更是智能体认知方式的根本变革。这场变革将重新定义智能的本质,开启人类认知边疆的新征程。
分享基于Coze平台实现抖音链接提取文案转小红书文案的智能体 绑定的微信公众号
相关文章:

从Transformer到世界模型:AGI核心架构演进
文章目录 引言:架构革命推动AGI进化一、Transformer:重新定义序列建模1.1 注意力机制的革命性突破1.2 从NLP到跨模态演进1.3 规模扩展的黄金定律 二、通向世界模型的关键跃迁2.1 从语言模型到认知架构2.2 世界模型的核心特征2.3 混合架构的突破 三、构建…...

Rk3588芯片介绍(含数据手册)
芯片介绍:RK3588是一款低功耗,高性能的处理器,适用于基于arm的PC和边缘计算设备,个人移动互联网设备和其他数字多媒体应用,集成了四核Cortex-A76和四核Cortex-A55以及单独的NEON协处理器 视频处理方面:提供…...
java开发面试自我介绍模板_java面试自我介绍3篇
java 面试自我介绍 3 篇 java 面试自我介绍篇一: 我叫赵,我的同学更都喜欢称呼我的英文名字,叫,六月的 意思,是君的谐音。我来自安徽的市,在 21 年我以市全市第一名 的成绩考上了大学,…...

w193基于Spring Boot的秒杀系统设计与实现
🙊作者简介:多年一线开发工作经验,原创团队,分享技术代码帮助学生学习,独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取,记得注明来意哦~🌹赠送计算机毕业设计600个选题excel文…...

chrome浏览器chromedriver下载
chromedriver 下载地址 https://googlechromelabs.github.io/chrome-for-testing/ 上面的链接有和当前发布的chrome浏览器版本相近的chromedriver 实际使用感受 chrome浏览器会自动更新,可以去下载最新的chromedriver使用,自动化中使用新的chromedr…...

【HTML入门】Sublime Text 4与 Phpstorm
文章目录 前言一、环境基础1.Sublime Text 42.Phpstorm(1)安装(2)启动Phpstorm(3)“启动”码 二、HTML1.HTML简介(1)什么是HTML(2)HTML版本及历史(3)HTML基本结构 2.HTML简单语法(1)HTML标签语法(2)HTML常用标签(3)表格(4)特殊字符 总结 前言 在当今的软件开发领域,…...

Python----Python高级(并发编程:进程Process,多进程,进程间通信,进程同步,进程池)
一、进程Process 拥有自己独立的堆和栈,既不共享堆,也不共享栈,进程由操作系统调度;进程切换需要的资源很最大,效率低。 对于操作系统来说,一个任务就是一个进程(Process)ÿ…...
汽车自动驾驶AI
汽车自动驾驶AI是当前汽车技术领域的前沿方向,以下是关于汽车自动驾驶AI的详细介绍: 技术原理 感知系统:自动驾驶汽车通过多种传感器(如激光雷达、摄像头、雷达、超声波传感器等)收集周围环境的信息。AI算法对这些传感…...

Linux之安装MySQL
1、查看系统当前版本是多少位的 getconf LONG_BIT2.去官网下载对应的MYSQL安装包 这里下载的是8版本的,位数对应之前的64位 官网地址:https://downloads.mysql.com/archives/community/ 3.上传压缩包 4.到对应目录下解压 tar -xvf mysql-8.0.26-lin…...

说说Redis的内存淘汰策略?
大家好,我是锋哥。今天分享关于【说说Redis的内存淘汰策略?】面试题。希望对大家有帮助; 说说Redis的内存淘汰策略? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 Redis 提供了多种内存淘汰策略,用于在内存达到限制时决定如何…...
SQL范式与反范式_优化数据库性能
1. 引言 什么是SQL范式 SQL范式是指数据库设计中的一系列规则和标准,旨在减少数据冗余、提高数据完整性和一致性。常见的范式包括第一范式(1NF)、第二范式(2NF)、第三范式(3NF)和BCNF(Boyce-Codd范式)。 什么是SQL反范式 SQL反范式是指在满足范式要求的基础上,有…...
从BIO到NIO:Java IO的进化之路
引言 在 Java 编程的世界里,输入输出(I/O)操作是基石般的存在,从文件的读取写入,到网络通信的数据传输,I/O 操作贯穿于各种应用程序的核心。BIO(Blocking I/O,阻塞式 I/O࿰…...

Mysql:数据库
Mysql 一、数据库概念?二、MySQL架构三、SQL语句分类四、数据库操作4.1 数据库创建4.2 数据库字符集和校验规则4.3 数据库修改4.4 数据库删除4.4 数据库备份和恢复其他 五、表操作5.1 创建表5.2 修改表5.3 删除表 六、表的增删改查6.1 Create(创建):数据新增1&#…...

深度学习系列--01.入门
一.深度学习概念 深度学习(Deep Learning)是机器学习的分支,是指使用多层的神经网络进行机器学习的一种手法抖音百科。它学习样本数据的内在规律和表示层次,最终目标是让机器能够像人一样具有分析学习能力,能够识别文字…...

【Elasticsearch】`auto_date_histogram`聚合功能详解
1.功能概述 auto_date_histogram是 Elasticsearch 提供的一种时间分桶聚合功能,它可以根据数据分布自动调整分桶的间隔,以生成指定数量的分桶。与传统的date_histogram不同,auto_date_histogram不需要用户手动指定时间间隔,而是根…...

php7.3安装php7.3-gmp扩展踩坑总结
环境: 容器里面为php7.3.3版本 服务器也为php7.3.3-14版本,但是因为业务量太大需要在服务器里面跑脚本 容器里面为 alpine 系统,安装各种扩展 服务器里面开发服为 ubuntu 16.04.7 LTS (Xenial Xerus) 系统 服务器线上为 ubuntu 20.04.6 LTS (…...
7. k8s二进制集群之Kube ApiServer部署
创建kube工作目录(仅在主节点上创建即可)同样在我们的部署主机上创建apiserver证书请求文件根据证书文件生成apiserver证书仅接着创建TLS所需要的TOKEN创建apiserver服务的配置文件(仅在主节点上创建即可)创建apiserver服务管理配置文件对所有master节点分发证书 & TOK…...

QT笔记——多语言翻译
文章目录 1、概要2、多语言切换2.1、结果展示2.2、创建项目2.2、绘制UI2.2、生成“.st”文件2.4、生成“.qm”文件2.5、工程demo 1、概要 借助QT自带的翻译功能,实现实际应用用进行 “多语言切换” 2、多语言切换 2.1、结果展示 多语言切换 2.2、创建项目 1、文件…...

【2025】camunda API接口介绍以及REST接口使用(3)
前言 在前面的两篇文章我们介绍了Camunda的web端和camunda-modeler的使用。这篇文章主要介绍camunda结合springboot进行使用,以及相关api介绍。 该专栏主要为介绍camunda的学习和使用 🍅【2024】Camunda常用功能基本详细介绍和使用-下(1&…...
js面试some和every的区别
1.基础使用 some和every 都是数组的一个方法let num [1,2,3,4,5,6] let flag1 num.some((item,index,array)> item > 2)let flag2 num.every((item,index, array)> item > 2)1.some 遍历判断中是符合条件的值 一旦找到则不会继续迭代下去 直接返回 2.every 遍历…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...

HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...
Mysql8 忘记密码重置,以及问题解决
1.使用免密登录 找到配置MySQL文件,我的文件路径是/etc/mysql/my.cnf,有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...