当前位置: 首页 > news >正文

记录 | 基于MaxKB的文字生成视频

目录

  • 前言
  • 一、安装SDK
  • 二、创建视频函数库
  • 三、调试
  • 更新时间


前言

参考文章:如何利用智谱全模态免费模型,生成大家都喜欢的图、文、视并茂的文章!

自己的感想
本文记录了创建文字生成视频的函数库的过程。如果想复现本文,需要你逐一按需看完下面三篇记录。
1、记录 | Docker的windows版安装
2、记录 | 基于Docker Desktop的MaxKB安装
3、记录 | MaxKB创建本地AI智能问答系统


一、安装SDK

打开Docker Destop后,进入Container下的MaxKB中,在Exec中输入安装命令。

pip install zhipuai

在这里插入图片描述


二、创建视频函数库

在这里插入图片描述

先创建函数,在函数中添加参数prompt。这个参数是创建视频所需要的文字描述。详情可以通过https://bigmodel.cn/dev/api/videomodel/cogvideox 查看。
接着写入一段Python代码,如下所示。

from zhipuai import ZhipuAI
import timedef generate_and_get_video_url(prompt):#替换为你自己的keyapi_key = "XXXXXXXXXXXXXXXXXXXXXX"model = "cogvideox-flash"# 创建ZhipuAI客户端client = ZhipuAI(api_key=api_key)# 生成视频generation_response = client.videos.generations(model=model,prompt=prompt)request_id = generation_response.id  # 使用属性访问# 检查视频生成状态并等待完成while True:retrieval_response = client.videos.retrieve_videos_result(id=request_id)task_status = retrieval_response.task_status  # 使用属性访问if task_status == "SUCCESS":# 获取视频URLif retrieval_response.video_result:video_url = retrieval_response.video_result[0].url  # 使用属性访问#return video_urlreturn f'<video controls width=500 height=300 src="{video_url}" frameborder="0" scrolling="no" allowfullscreen="true" alt="占位视频"></video>'else:print("视频生成成功,但未找到视频 URL")return Noneelif task_status == "FAILED":print("视频生成失败")return Noneelse:# 如果任务还在处理中,等待一段时间后再次检查time.sleep(5)print("视频正在生成中,稍后再试...")

三、调试

打开已经创建好的函数库,点击调试。在调试中输入prompt参数:

哈尔滨的中央大街上,人声鼎沸,热闹非凡,灯光闪烁,远处天空上烟花绚丽多彩

在这里插入图片描述
等待几秒后,可以获得连接:
在这里插入图片描述

复制上面的https链接并打开浏览器进行查看,如下图所示。
在这里插入图片描述


更新时间

  • 2025-02-02:创建。

相关文章:

记录 | 基于MaxKB的文字生成视频

目录 前言一、安装SDK二、创建视频函数库三、调试更新时间 前言 参考文章&#xff1a;如何利用智谱全模态免费模型&#xff0c;生成大家都喜欢的图、文、视并茂的文章&#xff01; 自己的感想 本文记录了创建文字生成视频的函数库的过程。如果想复现本文&#xff0c;需要你逐一…...

生成式AI安全最佳实践 - 抵御OWASP Top 10攻击 (下)

今天小李哥将开启全新的技术分享系列&#xff0c;为大家介绍生成式AI的安全解决方案设计方法和最佳实践。近年来生成式 AI 安全市场正迅速发展。据IDC预测&#xff0c;到2025年全球 AI 安全解决方案市场规模将突破200亿美元&#xff0c;年复合增长率超过30%&#xff0c;而Gartn…...

现场流不稳定,EasyCVR视频融合平台如何解决RTSP拉流不能播放的问题?

视频汇聚EasyCVR安防监控视频系统采用先进的网络传输技术&#xff0c;支持高清视频的接入和传输&#xff0c;能够满足大规模、高并发的远程监控需求。平台灵活性强&#xff0c;支持国标GB/T 28181协议、部标JT808、GA/T 1400协议、RTMP、RTSP/Onvif协议、海康Ehome、海康SDK、大…...

文献阅读 250205-Global patterns and drivers of tropical aboveground carbon changes

Global patterns and drivers of tropical aboveground carbon changes 来自 <Global patterns and drivers of tropical aboveground carbon changes | Nature Climate Change> 热带地上碳变化的全球模式和驱动因素 ## Abstract: Tropical terrestrial ecosystems play …...

算法与数据结构(括号匹配问题)

思路 从题干可以看出&#xff0c;只要给出的括号对应关系正确&#xff0c;那么就可以返回true,否则返回false。这个题可以使用栈来解决 解题过程 首先从第一个字符开始遍历&#xff0c;如果是括号的左边&#xff08;‘&#xff08;‘&#xff0c;’[‘&#xff0c;’}‘&…...

订单状态监控实战:基于 SQL 的状态机分析与异常检测

目录 1. 背景与问题 2. 数据准备 2.1 表结构设计 3. 场景分析与实现 3.1 场景 1:检测非法状态转换...

C# 中记录(Record)详解

从C#9.0开始&#xff0c;我们有了一个有趣的语法糖&#xff1a;记录(record)   为什么提供记录&#xff1f; 开发过程中&#xff0c;我们往往会创建一些简单的实体&#xff0c;它们仅仅拥有一些简单的属性&#xff0c;可能还有几个简单的方法&#xff0c;比如DTO等等&#xf…...

YOLOv11-ultralytics-8.3.67部分代码阅读笔记-autobackend.py

autobackend.py ultralytics\nn\autobackend.py 目录 autobackend.py 1.所需的库和模块 2.def check_class_names(names): 3.def default_class_names(dataNone): 4.class AutoBackend(nn.Module): 1.所需的库和模块 # Ultralytics &#x1f680; AGPL-3.0 License …...

Docker使用指南(一)——镜像相关操作详解(实战案例教学,适合小白跟学)

目录 1.镜像名的组成 2.镜像操作相关命令 镜像常用命令总结&#xff1a; 1. docker images 2. docker rmi 3. docker pull 4. docker push 5. docker save 6. docker load 7. docker tag 8. docker build 9. docker history 10. docker inspect 11. docker prune…...

Rust 变量特性:不可变、和常量的区别、 Shadowing

Rust 变量特性&#xff1a;不可变、和常量的区别、 Shadowing Rust 是一门以安全性和性能著称的系统编程语言&#xff0c;其变量系统设计独特且强大。本文将从三个角度介绍 Rust 变量的核心特性&#xff1a;可变性&#xff08;Mutability&#xff09;、变量与常量的区别&#…...

NFT Insider #167:Champions Tactics 角色加入 The Sandbox;AI 助力 Ronin 游戏生态

引言&#xff1a;NFT Insider 由 NFT 收藏组织 WHALE Members、BeepCrypto 联合出品&#xff0c; 浓缩每周 NFT 新闻&#xff0c;为大家带来关于 NFT 最全面、最新鲜、最有价值的讯息。每期周报将从 NFT 市场数据&#xff0c;艺术新闻类&#xff0c;游戏新闻类&#xff0c;虚拟…...

鹧鸪云无人机光伏运维解决方案

在新能源产业蓬勃发展的当下&#xff0c;光伏电站作为清洁能源供应的关键一环&#xff0c;其稳定运行和高效运维至关重要。随着光伏电站规模持续扩大&#xff0c;数量不断增加&#xff0c;传统人工巡检方式的弊端日益显著。人工巡检不仅效率低、人力和时间成本高&#xff0c;而…...

NeuralCF 模型:神经网络协同过滤模型

实验和完整代码 完整代码实现和jupyter运行&#xff1a;https://github.com/Myolive-Lin/RecSys--deep-learning-recommendation-system/tree/main 引言 NeuralCF 模型由新加坡国立大学研究人员于 2017 年提出&#xff0c;其核心思想在于将传统协同过滤方法与深度学习技术相结…...

【前端】【Ts】【知识点总结】TypeScript知识总结

一、总体概述 TypeScript 是 JavaScript 的超集&#xff0c;主要通过静态类型检查和丰富的类型系统来提高代码的健壮性和可维护性。它涵盖了从基础数据类型到高级类型、从函数与对象的类型定义到类、接口、泛型、模块化及装饰器等众多知识点。掌握这些内容有助于编写更清晰、结…...

JAVA架构师进阶之路

JAVA架构师进阶之路 前言 苦于网络上充斥的各种java知识&#xff0c;多半是互相抄袭&#xff0c;导致很多后来者在学习java知识中味同嚼蜡&#xff0c;本人闲暇之余整理了进阶成为java架构师所必须掌握的核心知识点&#xff0c;后续会不断扩充。 废话少说&#xff0c;直接上正…...

掌握@PostConstruct与@PreDestroy,优化Spring Bean的初始化和销毁

在Spring中&#xff0c;PostConstruct和PreDestroy注解就像是对象的“入职”和“离职”仪式。 1. PostConstruct注解&#xff1a;这个注解标记的方法就像是员工入职后的“岗前培训”。当一个对象&#xff08;比如一个Bean&#xff09;被Spring容器创建并注入依赖后&#xff0c;…...

Java设计模式:行为型模式→状态模式

Java 状态模式详解 1. 定义 状态模式&#xff08;State Pattern&#xff09;是一种行为型设计模式&#xff0c;它允许对象在内部状态改变时改变其行为。状态模式通过将状态需要的行为封装在不同的状态类中&#xff0c;实现对象行为的动态改变。该模式的核心思想是分离不同状态…...

景联文科技:专业数据采集标注公司 ,助力企业提升算法精度!

随着人工智能技术加速落地&#xff0c;高质量数据已成为驱动AI模型训练与优化的核心资源。据统计&#xff0c;全球AI数据服务市场规模预计2025年突破200亿美元&#xff0c;其中智能家居、智慧交通、医疗健康等数据需求占比超60%。作为国内领先的AI数据服务商&#xff0c;景联文…...

ES面试题

1、Elasticsearch的基本构成&#xff1a; &#xff08;1&#xff09;index 索引&#xff1a; 索引类似于mysql 中的数据库&#xff0c;Elasticesearch 中的索引是存在数据的地方&#xff0c;包含了一堆有相似结构的文档数据。 &#xff08;2&#xff09;type 类型&#xff1a…...

LabVIEW2025中文版软件安装包、工具包、安装教程下载

下载链接&#xff1a;LabVIEW及工具包大全-三易电子工作室http://blog.eeecontrol.com/labview6666 《LabVIEW2025安装图文教程》 1、解压后&#xff0c;双击install.exe安装 2、选中“我接受上述2条许可协议”&#xff0c;点击下一步 3、点击下一步&#xff0c;安装NI Packa…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统&#xff0c;可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析&#xff1a;自动解析Markdown文档结构PPT模板分析&#xff1a;分析PPT模板的布局和风格智能布局决策&#xff1a;匹配内容与合适的PPT布局自动…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

WebRTC从入门到实践 - 零基础教程

WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC&#xff1f; WebRTC&#xff08;Web Real-Time Communication&#xff09;是一个支持网页浏览器进行实时语音…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三&#xff0c;HubSpot宣布已构建与ChatGPT的深度集成&#xff0c;这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋&#xff0c;但同时也存在一些关于数据安全的担忧。 许多网络声音声称&#xff0c;这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...