(2025|ICLR,音频 LLM,蒸馏/ALLD,跨模态学习,语音质量评估,MOS)音频 LLM 可作为描述性语音质量评估器
Audio Large Language Models Can Be Descriptive Speech Quality Evaluators

目录
1. 概述
2. 研究背景与动机
3. 方法
3.1 语音质量评估数据集
3.2 ALLD 对齐策略
4. 实验结果分析
4.1 MOS 评分预测(数值评估)
4.2 迁移能力(在不同语音领域测试)
4.3 语音 A/B 测试(偏好评估)
4.4 BLEU 分数(描述生成质量)
5. 结论
1. 概述
该论文研究了 音频大语言模型(Audio LLMs) 在语音质量评估中的应用,并提出了一种新的对齐方法 ALLD(Alignment with LLM Distillation) 来增强模型的语音质量感知能力。
研究团队构建了 首个基于自然语言的语音质量评估数据集,包含多维度分析和 A/B 测试数据,旨在帮助 Audio LLMs 进行类似人类的语音质量分析。
实验表明,ALLD 方法在 均方误差(MSE)、A/B 测试准确率 和 BLEU 分数 等指标上超越了 SOTA(最先进)模型,提升了音频 LLM 在多模态任务中的实用性。
研究贡献:
- 首次构建基于自然语言的语音质量评估数据集,提供比 MOS 数值更详细的语音质量描述。
- 提出 ALLD 方法,通过 LLM 知识蒸馏 让 Audio LLM 具备人类级别的语音质量评估能力。
- 超越传统 MOS 预测模型,不仅提升预测准确率,还能生成高质量的语音质量描述。
- 验证了 Audio LLMs 在多模态任务中的潜力,为未来 自适应音频智能体 研究奠定基础。
2. 研究背景与动机
现有 Audio LLMs 的局限:
- 主要专注于 语音内容解析(如语音识别、翻译、问答),但 忽略了语音信号质量(如噪声、失真、连贯性)。
- 传统 LLMs 无法感知音频输入质量,因为 语音质量评估任务未被纳入多任务训练。
语音质量评估的重要性:
- 在语音通信、文本转语音(TTS)、语音编辑等应用中,语音质量是关键指标。
- 现有评估方法基于 均值主观评分(MOS),但仅提供 数值评分,无法解释 导致评分的因素。
研究目标:让 Audio LLMs 像人类一样 进行语音质量评估,提供 自然语言描述和解释。
3. 方法
3.1 语音质量评估数据集

研究团队构建了 首个基于自然语言的语音质量评估数据集,包含:
- 多维度分析(噪声、颜色化、连贯性、响度)+ 整体 MOS 评分。
- A/B 测试(对比两个语音样本,生成偏好判断)。
- 综合评价示例(LLM 生成的质量描述,如:“该语音略有失真,无背景噪声,但存在明显的不连贯性,MOS 评分 2.4”)。

3.2 ALLD 对齐策略
ALLD(Alignment with LLM Distillation) 采用 LLM 知识蒸馏 来优化 Audio LLM 的语音质量感知能力。核心流程:
- 音频 LLM 处理原始音频,生成质量描述。
- 专家 LLM 作为参考模型,提供基于元信息的 “优选答案”。
- ALLD 通过 token 级蒸馏对齐 Audio LLM 输出,使其向专家 LLM 生成的描述靠拢。
- 优化目标 结合 偏好优化算法(DPO),最大化高质量输出的概率,同时最小化 Audio LLM 与专家 LLM 之间的 KL 散度。
4. 实验结果分析
4.1 MOS 评分预测(数值评估)
ALLD 方法在 MOS 预测任务 上取得 最佳均方误差(MSE = 0.17),比传统回归模型 CNN-SA-AP(MSE = 0.23)更精确。
在 Spearman 相关系数(SRCC)和线性相关系数(LCC) 上,ALLD 也优于传统方法,证明其泛化能力更强。

4.2 迁移能力(在不同语音领域测试)
在不同领域(如手机录音、法医语音)测试时,ALLD 依然保持高精度,说明其泛化能力优秀。
BLEU 分数在多个测试集上均有所提升,表明 ALLD 增强了 Audio LLM 的语言能力。

4.3 语音 A/B 测试(偏好评估)
ALLD 的 A/B 测试准确率达到 98.6%,比单独使用 MOS 训练的模型(95.6%)更精准。
证明 ALLD 方法不仅能预测 MOS,还能进行高质量的语音对比分析。

4.4 BLEU 分数(描述生成质量)
ALLD 在BLEU 评分(文本描述质量指标)上达到 25.8,远超基线模型(23.4)。
说明 ALLD 生成的语音质量描述更加自然、精准、富有信息。

5. 结论
本文提出 ALLD 方法,首次让 Audio LLMs 具备类似人类的语音质量感知能力。通过 数据集构建 + LLM 蒸馏训练,ALLD 在 MOS 预测、A/B 测试、描述生成 三大任务上超越 SOTA 模型,提升了 音频 LLM 的多模态理解能力。这项研究为 AI 语音质量评估、文本转语音(TTS)、语音编辑等应用 提供了新的方向,推动了真正感知和理解音频信号的智能系统 发展。
未来研究方向:
- 更细粒度的语音质量分析:目前 MOS 评估以句子级为主,未来可扩展至单词级或音素级评估。
- 无监督语音质量评估:探索零样本或少样本学习,减少对大规模标注数据的依赖。
- 自适应 Audio LLMs:让模型在处理不同音频任务时自动适应质量评估需求,实现端到端智能音频分析。
论文地址:https://www.arxiv.org/abs/2501.17202
进 Q 学术交流群:922230617
相关文章:
(2025|ICLR,音频 LLM,蒸馏/ALLD,跨模态学习,语音质量评估,MOS)音频 LLM 可作为描述性语音质量评估器
Audio Large Language Models Can Be Descriptive Speech Quality Evaluators 目录 1. 概述 2. 研究背景与动机 3. 方法 3.1 语音质量评估数据集 3.2 ALLD 对齐策略 4. 实验结果分析 4.1 MOS 评分预测(数值评估) 4.2 迁移能力(在不同…...
使用 CSS 实现透明效果
在 CSS 中,实现透明效果有几种方法,具体使用哪种方法取决于具体需求。以下是一些常见的方法: 使用 opacity 属性: opacity 属性可以设置整个元素的透明度,包括其所有的子元素。 .transparent { opacity: 0.5; /* 0 表…...
4G核心网的演变与创新:从传统到虚拟化的跨越
4G核心网 随着移动通信技术的不断发展,4G核心网已经经历了从传统的硬件密集型架构到现代化、虚拟化网络架构的重大转型。这一演变不仅提升了网络的灵活性和可扩展性,也为未来的5G、物联网(LOT)和边缘计算等技术的发展奠定了基础。…...
数据库系统概论的第六版与第五版的区别,附pdf
我用夸克网盘分享了「数据库系统概论第五六版资源」,点击链接即可保存。 链接:https://pan.quark.cn/s/21a278378dee 第6版教材修订的主要内容 为了保持科学性、先进性和实用性,在第5版教材基础上对全书内容进行了修改、更新和充实。 在科…...
uniapp小程序自定义中间凸起样式底部tabbar
我自己写的自定义的tabbar效果图 废话少说咱们直接上代码,一步一步来 第一步: 找到根目录下的 pages.json 文件,在 tabBar 中把 custom 设置为 true,默认值是 false。list 中设置自定义的相关信息, pagePath&#x…...
自己实现的一个缓存数据库(搞着玩) .net Core/6/8/9
自己实现的一个缓存数据库(搞着玩) 想法来源特点说明 上代码主体基类测试类 注 想法来源 做过一个小型项目,客户要求易移植,不能使用收费的数据库,最好是一个包搞定,尝试过用sqlite,在部分linux…...
在Qt中,slots 关键字有什么用?
有下面的Qt代码: #ifndef MAINWINDOW_H #define MAINWINDOW_H#include <QMainWindow>QT_BEGIN_NAMESPACE namespace Ui { class MainWindow; } QT_END_NAMESPACEclass MainWindow : public QMainWindow {Q_OBJECTpublic:MainWindow(QWidget *parent nullptr…...
如何查看linux机器有几个cpu
在 Linux 机器上,你可以使用以下几种方法来查看 CPU 的数量(物理 CPU 和逻辑 CPU): 方法 1:使用 lscpu 命令 lscpu输出示例: CPU(s): 8 Thread(s) per core: 2 Core(s) per socket: 4 Soc…...
Swoole如何处理内存泄漏
Swoole处理内存泄漏的方式主要包括以下几个方面: 一、内存管理机制 Swoole的内存管理机制与普通PHP-CLI程序一致,但它在事件回调函数返回后会自动回收所有局部对象和变量,不需要手动unset。如果变量是一个资源类型,那么对应的资…...
Llama最新开源大模型Llama3.1
Meta公司于2024年7月23日发布了最新的开源大模型Llama 3.1,这是其在大语言模型领域的重要进展。以下是关于Llama 3.1的详细介绍: 参数规模与训练数据 Llama 3.1拥有4050亿(405B)参数,是目前开源领域中参数规模最大的…...
Pixflow - CL-DJI Drone LUTs 120个大疆Drone无人机相机航拍电影级镜头LUT调色预设
120组电影质感DJI大疆无人机航拍视频LOG&Rec 709还原颜色分级调色LUTs预设包Pixflow – CL-DJI Drone LUTs 使用基于城市外观和 DJI 无人机镜头的最佳 Drone Luts 颜色预设来提升您的视频。 120 个出色的颜色分级 LUTS,您可以将其与任何无人机视频素材一起使用…...
了解AI绘图,Stable Diffusion的使用
AI绘图对GPU算力要求较高。 个人电脑配置可参考: CPU:14600kf 盒装 显卡:RTX 4080金属大师 OC,16G显存 主板:z790吹雪d4 内存:芝奇皇家戟4000c18,162G 硬盘:宏基gm7000 1T 散热:追风…...
idea整合deepseek实现AI辅助编程
1.File->Settings 2.安装插件codegpt 3.注册deepseek开发者账号,DeepSeek开放平台 4.按下图指示创建API KEY 5.回到idea配置api信息,File->Settings->Tools->CodeGPT->Providers->Custom OpenAI API key填写deepseek的api key Chat…...
llama_index
目录 安装 llama_index 搜索引擎 用 DeepSeek API 替换本地 Ollama 模型 源代码: 安装 pip install llama_index llama_index 搜索引擎 llama_index框架构建搜索引擎_llamaindex使用正则表达式拆分文档-CSDN博客 用 DeepSeek API 替换本地 Ollama 模型 https…...
Spring Boot统一异常拦截实践指南
Spring Boot统一异常拦截实践指南 一、为什么需要统一异常处理 在Web应用开发中,异常处理是保证系统健壮性和用户体验的重要环节。传统开发模式中常见的痛点包括: 异常处理逻辑分散在各个Controller中错误响应格式不统一敏感异常信息直接暴露给客户端…...
Games104——游戏引擎Gameplay玩法系统:基础AI
这里写目录标题 寻路/导航系统NavigationWalkable AreaWaypoint NetworkGridNavigation Mesh(寻路网格)Sparse Voxel Octree Path FindingDijkstra Algorithm迪杰斯特拉算法A Star(A*算法) Path Smoothing Steering系统Crowd Simu…...
stm32生成hex文件详解
1.产生的map文件干啥的? 2.组成情况??? 废话少说,直接上代码具体内容况: Component: ARM Compiler 5.06 update 7 (build 960) Tool: armlink [4d3601]Section Cross Referencesstartup_stm32f103xe.o(S…...
【Windows 开发NVIDIA相关组件】CUDA、cuDNN、TensorRT
目录 1. 安装 CUDA Toolkit 2. 安装 cuDNN 3. 安装 Zlib 4. 安装 TensorRT 5. 安装 TensorRT Python 包[c++项目不需要] 6. 安装 ONNX GraphSurgeon 包[c++项目不需要] 1. 安装 CUDA Toolkit 从 CUDA ToolkitArchive 下载对应版本的离线安装包,以 11.7 版本为例。 打开安…...
AI大模型(二)基于Deepseek搭建本地可视化交互UI
AI大模型(二)基于Deepseek搭建本地可视化交互UI DeepSeek开源大模型在榜单上以黑马之姿横扫多项评测,其社区热度指数暴涨、一跃成为近期内影响力最高的话题,这个来自中国团队的模型向世界证明:让每个普通人都能拥有媲…...
各种协议设计
这些设计问题背后的核心本质可以总结为以下几个关键原则,我将结合不同领域为您系统讲解: 一、核心设计原则(本质层面) 抽象与分层 本质:将复杂系统分解为不同层次的抽象(物理层/逻辑层/业务层)…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...
【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...
【LeetCode】算法详解#6 ---除自身以外数组的乘积
1.题目介绍 给定一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O…...
离线语音识别方案分析
随着人工智能技术的不断发展,语音识别技术也得到了广泛的应用,从智能家居到车载系统,语音识别正在改变我们与设备的交互方式。尤其是离线语音识别,由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力,广…...
水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关
在水泥厂的生产流程中,工业自动化网关起着至关重要的作用,尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关,为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多,其中不少设备采用Devicenet协议。Devicen…...
