用Python获取股票数据并实现未来收盘价的预测
获取数据
先用下面这段代码获取上证指数的历史数据,得到的csv文件数据,为后面训练模型用的
import akshare as ak
import pandas as pd# 获取上证指数历史数据
df = ak.stock_zh_index_daily(symbol="sh000001")# 将数据保存到本地CSV文件
df.to_csv("sh000001.csv", index=False, encoding="utf-8-sig")# 打印数据
print(df)
注意:运行上段代码之前,需要先用下面这个指令安装akshare包:
pip install akshare
运行完上述代码之后,会得到如下一个csv文件:
训练模型
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader# ------------------------
# 1. 加载数据
# ------------------------
data = pd.read_csv('sh000001.csv') # 替换为你的文件路径
data['date'] = pd.to_datetime(data['date'])
data.set_index('date', inplace=True)# 提取收盘价数据
close_prices = data['close'].values.reshape(-1, 1)# ------------------------
# 2. 数据预处理
# ------------------------
# 归一化
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_close = scaler.fit_transform(close_prices)# 创建时间序列数据集(滑动窗口)
def create_dataset(data, window_size=60):X, y = [], []for i in range(len(data) - window_size - 7): # 预测未来7天X.append(data[i:i+window_size])y.append(data[i+window_size:i+window_size+7]) # 输出未来7天的数据return np.array(X), np.array(y)window_size = 60 # 用过去60天的数据预测未来7天
X, y = create_dataset(scaled_close, window_size)# 划分训练集和测试集
train_size = int(len(X) * 0.8)
X_train, X_test = X[:train_size], X[train_size:]
y_train, y_test = y[:train_size], y[train_size:]# 转换为PyTorch张量
X_train = torch.FloatTensor(X_train)
y_train = torch.FloatTensor(y_train)
X_test = torch.FloatTensor(X_test)
y_test = torch.FloatTensor(y_test)# 自定义Dataset类
class TimeSeriesDataset(Dataset):def __init__(self, X, y):self.X = Xself.y = ydef __len__(self):return len(self.X)def __getitem__(self, idx):return self.X[idx], self.y[idx]# 创建DataLoader
batch_size = 64
train_dataset = TimeSeriesDataset(X_train, y_train)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)# ------------------------
# 3. 定义LSTM模型
# ------------------------
class LSTMModel(nn.Module):def __init__(self, input_size=1, hidden_size=50, output_size=7):super().__init__()self.hidden_size = hidden_sizeself.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)self.linear = nn.Linear(hidden_size, output_size)def forward(self, x):# LSTM层out, (h_n, c_n) = self.lstm(x)# 仅取最后一个时间步的隐藏状态out = self.linear(out[:, -1, :])return out# 初始化模型
model = LSTMModel(input_size=1, hidden_size=100, output_size=7)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)# ------------------------
# 4. 训练模型
# ------------------------
num_epochs = 50
model.train()for epoch in range(num_epochs):for batch_X, batch_y in train_loader:# 前向传播outputs = model(batch_X)loss = criterion(outputs, batch_y.squeeze())# 反向传播optimizer.zero_grad()loss.backward()optimizer.step()print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()*1000:.6f}')# ------------------------
# 5. 预测与评估
# ------------------------
model.eval()
with torch.no_grad():# 测试集预测test_pred = model(X_test)test_pred = test_pred.numpy()# 反归一化test_pred = scaler.inverse_transform(test_pred.reshape(-1, 1)).reshape(-1, 7)y_test_actual = scaler.inverse_transform(y_test.numpy().reshape(-1, 1)).reshape(-1, 7)# 预测未来7天(使用最新数据)last_window = scaled_close[-window_size:].reshape(1, window_size, 1)last_window_tensor = torch.FloatTensor(last_window)future_pred = model(last_window_tensor).numpy()future_pred = scaler.inverse_transform(future_pred.reshape(-1, 1)).flatten()# ------------------------
# 6. 可视化结果
# ------------------------
# 测试集预测示例(取第一条样本)
plt.figure(figsize=(12, 6))
plt.plot(y_test_actual[0], label='True Future')
plt.plot(test_pred[0], label='Predicted Future')
plt.legend()
plt.title('Test Set Prediction Example')
plt.show()# 未来7天预测
print("未来7天收盘价预测:")
for i, price in enumerate(future_pred):print(f'Day {i+1}: {price:.2f}')
关键步骤解释
数据预处理:
使用 MinMaxScaler 归一化收盘价到 [0, 1]。
创建滑动窗口数据集(用过去 window_size=60 天的数据预测未来7天)。
模型结构:
LSTM层:输入维度为1(单变量时间序列),隐藏层维度为100。
全连接层:将LSTM最后一个时间步的隐藏状态映射到未来7天的输出。
训练与预测:
使用均方误差(MSE)作为损失函数。
训练完成后,对测试集和未来7天进行预测,并反归一化得到实际价格。
未来预测:
使用最新的 window_size=60 天数据生成输入窗口,预测未来7天收盘价。
相关文章:

用Python获取股票数据并实现未来收盘价的预测
获取数据 先用下面这段代码获取上证指数的历史数据,得到的csv文件数据,为后面训练模型用的 import akshare as ak import pandas as pd# 获取上证指数历史数据 df ak.stock_zh_index_daily(symbol"sh000001")# 将数据保存到本地CSV文件 df.…...

Rust 所有权特性详解
Rust 所有权特性详解 Rust 的所有权系统是其内存安全的核心机制之一。通过所有权规则,Rust 在编译时避免了常见的内存错误(如空指针、数据竞争等)。本文将从堆内存与栈内存、所有权规则、变量作用域、String 类型、内存分配、所有权移动、Cl…...
Gateway路由匹配规则详解
在微服务架构中,Gateway作为请求的入口,扮演着至关重要的角色。它不仅负责路由转发,还具备安全、监控、限流等多种功能。其中,路由匹配规则是Gateway的核心功能之一,它决定了请求如何被正确地转发到目标服务。本文将详…...
项目实操:windows批处理拉取git库和处理目录、文件
初级代码游戏的专栏介绍与文章目录-CSDN博客 我的github:codetoys,所有代码都将会位于ctfc库中。已经放入库中我会指出在库中的位置。 这些代码大部分以Linux为目标但部分代码是纯C的,可以在任何平台上使用。 源码指引:github源…...
前端开发知识梳理 - HTMLCSS
1. 盒模型 由内容区(content)、内边距(padding)、边框(border)和外边距(margin)组成。 (1)标准盒模型(box-sizing默认值, content-boxÿ…...
nginx中的proxy_set_header参数详解
在使用 Nginx 作为反向代理服务器时,proxy_set_header 指令扮演着至关重要的角色。它允许我们自定义请求头信息,将客户端请求传递给上游服务器时,添加或修改特定的信息,从而实现更灵活的代理功能。本文将深入探讨 proxy_set_heade…...
MapReduce是什么?
MapReduce 是一种编程模型,最初由 Google 提出,旨在处理大规模数据集。它是分布式计算的一个重要概念,通常用于处理海量数据并进行并行计算。MapReduce的基本思想是将计算任务分解为两个阶段:Map 阶段和 Reduce 阶段。 Map 阶段&a…...

Text2Sql:开启自然语言与数据库交互新时代(3030)
一、Text2Sql 简介 在当今数字化时代,数据处理和分析的需求日益增长。对于众多非技术专业人员而言,数据库操作的复杂性常常成为他们获取所需信息的障碍。而 Text2Sql 技术的出现,为这一问题提供了有效的解决方案。 Text2Sql,即文…...

《图解设计模式》笔记(五)一致性
十一、Composite模式:容器与内容的一致性 像文件夹与文件一样,文件夹中可以放子文件夹与文件,再比如容器中可以放更小的容器和具体内容。 Composite模式:使容器与内容具有一致性,创造出递归结构。 Composite&#x…...

华为支付-免密支付接入免密代扣说明
免密代扣包括支付并签约以及签约代扣场景。 开发者接入免密支付前需先申请开通签约代扣产品(即申请配置免密代扣模板及协议模板ID)。 华为支付以模板维度管理每一个代扣扣费服务,主要组成要素如下: 接入免密支付需注意&#x…...
React组件中的列表渲染与分隔符处理技巧
React组件中的列表渲染与分隔符处理技巧 摘要问题背景解决方案分析方案一:数组拼接法方案二:Fragment组件方案三:动态生成key 关键技术点1. key的使用原则2. Fragment组件3. 性能优化 实战演练挑战1:动态分隔符样式挑战2ÿ…...

【Pytorch和Keras】使用transformer库进行图像分类
目录 一、环境准备二、基于Pytorch的预训练模型1、准备数据集2、加载预训练模型3、 使用pytorch进行模型构建 三、基于keras的预训练模型四、模型测试五、参考 现在大多数的模型都会上传到huggface平台进行统一的管理,transformer库能关联到huggface中对应的模型&am…...
快速了解 c++ 异常处理 基础知识
相关代码概览: #include<stdexcept>std::runtime_errorcatch (const std::runtime_error& e) e.what() 相信大家一定见过这些代码,那么这些代码具体什么意思呢?我们一起来看一下 知识精讲: 异常处理是C中非常重要…...

deepseek API 调用-python
【1】创建 API keys 【2】安装openai SDK pip3 install openai 【3】代码: https://download.csdn.net/download/notfindjob/90343352...
玩转Gin框架:Golang使用Gin完成登录流程
文章目录 背景基于Token认证机制简介常见的Token类型Token的生成和验证在项目工程里创建jwt.go文件根目录新建.env文件 创建登录接口 /loginToken认证机制的优点 背景 登录流程,相信大家都很熟悉的。传统网站采用session后端验证登录状态,大致流程如下&…...

Linux学习笔记16---高精度延时实验
延时函数是很常用的 API 函数,在前面的实验中我们使用循环来实现延时函数,但是使用循环来实现的延时函数不准确,误差会很大。虽然使用到延时函数的地方精度要求都不会很严格( 要求严格的话就使用硬件定时器了 ) ,但是延时函数肯定…...

vue2:如何动态控制el-form-item之间的行间距
需求 某页面有查看和编辑两种状态: 编辑: 查看: 可以看到,查看时,行间距太大导致页面不紧凑,所以希望缩小查看是的行间距。 行间距设置 行间距通常是通过 CSS 的 margin 或 padding 属性来控制的。在 Element UI 的样式表中,.el-form-item 的下边距(margin-bottom)…...

deepseek从网络拓扑图生成说明文字实例
deepseek对话页面中输入问题指令: 我是安全测评工程师,正在撰写系统测评报告,现在需要对系统网络架构进行详细说明,请根据附件网络拓扑图输出详细说明文字。用总分的段落结构,先介绍各网络区域,再介绍网络…...

两种文件类型(pdf/图片)打印A4半张纸方法
环境:windows10、Adobe Reader XI v11.0.23 Pdf: 1.把内容由横排变为纵排: 2.点击打印按钮: 3.选择打印页范围和多页: 4.内容打印在纸张上部 图片: 1.右键图片点击打印: 2.选择打印类型: 3.打印配置&am…...

HTB:UnderPass[WriteUP]
目录 连接至HTB服务器并启动靶机 信息收集 使用rustscan对靶机TCP端口进行开放扫描 使用nmap对靶机TCP开放端口进行脚本、服务扫描 使用nmap对靶机TCP开放端口进行漏洞、系统扫描 使用nmap对靶机常用UDP端口进行开放扫描 使用nmap对靶机UDP开放端口进行脚本、服务扫描 …...

接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...

黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 。它的特点包括&a…...

Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
腾讯云V3签名
想要接入腾讯云的Api,必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口,但总是卡在签名这一步,最后放弃选择SDK,这次终于自己代码实现。 可能腾讯云翻新了接口文档,现在阅读起来,清晰了很多&…...

【JVM】Java虚拟机(二)——垃圾回收
目录 一、如何判断对象可以回收 (一)引用计数法 (二)可达性分析算法 二、垃圾回收算法 (一)标记清除 (二)标记整理 (三)复制 (四ÿ…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)
macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 🍺 最新版brew安装慢到怀疑人生?别怕,教你轻松起飞! 最近Homebrew更新至最新版,每次执行 brew 命令时都会自动从官方地址 https://formulae.…...
Python学习(8) ----- Python的类与对象
Python 中的类(Class)与对象(Object)是面向对象编程(OOP)的核心。我们可以通过“类是模板,对象是实例”来理解它们的关系。 🧱 一句话理解: 类就像“图纸”,对…...

内窥镜检查中基于提示的息肉分割|文献速递-深度学习医疗AI最新文献
Title 题目 Prompt-based polyp segmentation during endoscopy 内窥镜检查中基于提示的息肉分割 01 文献速递介绍 以下是对这段英文内容的中文翻译: ### 胃肠道癌症的发病率呈上升趋势,且有年轻化倾向(Bray等人,2018&#x…...