当前位置: 首页 > news >正文

【DeepSeek-R1训练笔记】随手记录一些训练log

背景说明

  • DeepSeek系列解读请移步我的上一篇blog:【完整版】DeepSeek-R1大模型学习笔记(架构、训练、Infra)
  • 代码仓库【科大的大四老哥太太太太太值得倾佩了】:https://github.com/Unakar/Logic-RL
  • DeepSeek-R1-Zero复现文档:https://evxpwrsfkdb.feishu.cn/docx/NokEdaMBmo6aqZxVdxkcSm2cnab
  • 趁着DeepSeek火起来的这个风口,自己抓紧学习一下大模型的基础知识,慢慢把之前积累的一些东西串起来
  • 非常佩服科大的老哥,前途无量,正好我来学习一下大模型训练过程,看下有哪些训练坑和经验值得总结

基本设置

  • 训练算法:DeepSeek-R1-Zero纯RL训练(无long CoT、SFT和蒸馏过程)
  • Base model:Qwen/Qwen2.5-7B-Instruct-1M(huggingface传送门)
  • 训练脚本执行:
    bash main_grpo.sh
    

RL训练过程

第一阶段:正确的格式学习(3PPL数据集)

  • 训练400个step

  • wandb file:run-20250207_161945-1oftdu9q

  • main_grpo.sh脚本配置如下:

    set -x
    MODEL_PATH='Qwen2.5-7B-Instruct-1M'
    export VLLM_ATTENTION_BACKEND=XFORMERS
    python3 -m verl.trainer.main_ppo \algorithm.adv_estimator=grpo \data.train_files=data/kk/instruct/3ppl/train.parquet \data.val_files=data/kk/instruct/3ppl/test.parquet \data.train_batch_size=2 \data.val_batch_size=4 \data.max_prompt_length=400 \data.max_response_length=2048 \actor_rollout_ref.model.path=$MODEL_PATH \actor_rollout_ref.actor.optim.lr=3e-7 \actor_rollout_ref.model.use_remove_padding=True \actor_rollout_ref.actor.ppo_mini_batch_size=256 \actor_rollout_ref.actor.ppo_micro_batch_size=64 \actor_rollout_ref.actor.use_kl_loss=True \actor_rollout_ref.actor.kl_loss_coef=0.001 \actor_rollout_ref.actor.kl_loss_type=low_var_kl \actor_rollout_ref.model.enable_gradient_checkpointing=True \actor_rollout_ref.actor.fsdp_config.param_offload=True \actor_rollout_ref.actor.fsdp_config.grad_offload=True \actor_rollout_ref.actor.fsdp_config.optimizer_offload=True \actor_rollout_ref.rollout.log_prob_micro_batch_size=160 \actor_rollout_ref.rollout.tensor_model_parallel_size=1 \actor_rollout_ref.rollout.name=vllm \actor_rollout_ref.rollout.gpu_memory_utilization=0.6 \actor_rollout_ref.rollout.n=16 \actor_rollout_ref.ref.log_prob_micro_batch_size=160 \actor_rollout_ref.ref.fsdp_config.param_offload=True \algorithm.kl_ctrl.kl_coef=0.001 \trainer.critic_warmup=0 \trainer.logger=['wandb'] \trainer.project_name='GRPO_logic_KK' \trainer.experiment_name='Qwen-7B' \trainer.n_gpus_per_node=2 \trainer.nnodes=1 \trainer.default_local_dir=local_dir \trainer.default_hdfs_dir=null \trainer.save_freq=10 \trainer.test_freq=10 \trainer.total_epochs=1 $@ 2>&1 | tee grpo.log
    

验证集:效果逐渐变好

在这里插入图片描述

平均reward、答案错误的比例、全对的比例、格式错误比例:前三者趋势正确,但是变化不大,格式错误大幅降低!因为这一步主要是在简单的3PPL数据上学格式,大约10个step可以将格式错误降到0.1以下

在这里插入图片描述

平均生成长度:有少量增长,但并不明显,应该是还在第一阶段的问题

在这里插入图片描述
再看一下生成答案过程中的一些特点:

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

再看一下出现的格式错误具体原因:

在这里插入图片描述

在这里插入图片描述

还出现了不同程度的语言混杂问题:

在这里插入图片描述

在这里插入图片描述

相关文章:

【DeepSeek-R1训练笔记】随手记录一些训练log

背景说明 DeepSeek系列解读请移步我的上一篇blog:【完整版】DeepSeek-R1大模型学习笔记(架构、训练、Infra)代码仓库【科大的大四老哥太太太太太值得倾佩了】:https://github.com/Unakar/Logic-RLDeepSeek-R1-Zero复现文档&#…...

【自开发工具介绍】SQLSERVER的ImpDp和ExpDp工具04

SQLSERVER的ImpDp和ExpDp工具演示 1、指定某些表作为导出对象外 (-exclude_table) 验证用:导出的表,导入到新的数据库 2、指定某些表作为导出对象外 (-exclude_table) 支持模糊检索,可以使用星号 以s开头的表作为导出对象外,…...

「全网最细 + 实战源码案例」设计模式——策略模式

核心思想 策略模式(Strategy Pattern)是一种行为型设计模式,用于定义一系列算法或策略,将它们封装成独立的类,并使它们可以相互替换,而不影响客户端的代码,提高代码的可维护性和扩展性。 结构 …...

[MoeCTF 2022]baby_file

题目 <html> <title>Heres a secret. Can you find it?</title> <?phpif(isset($_GET[file])){$file $_GET[file];include($file); }else{highlight_file(__FILE__); } ?> </html> 读取flag /?filephp://filter/readconvert.base64-encode…...

【AI日记】25.02.07 探索开辟第二战场

【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】【读书与思考】【AI应用】 探索 探索如何做视频博主一边坚持主攻方向&#xff08; 找工作&#xff0c;包括 AI 学习和 kaggle比赛&#xff09;&#xff0c;一边尝试开辟第二战场&#xff08;比如&#xff1a;视…...

path 路径模块

在开发基于 Node.js 的应用程序时&#xff0c;处理文件路径是一个常见的需求。为了简化这一过程并避免跨平台兼容性问题&#xff0c;Node.js 提供了 path 模块。该模块提供了一系列实用的方法来解析、格式化和操作文件路径。本文将详细介绍 path 模块的功能及其使用方法&#x…...

SpringBoot中的多环境配置管理

SpringBoot中的多环境配置管理 文章目录 SpringBoot中的多环境配置管理SpringBoot中的多环境配置管理 多环境配置的概述1. 为什么需要多环境配置&#xff1f;2. Spring Boot 中如何实现多环境配置&#xff1f;3. 多环境配置的应用场景4. 如何实现配置隔离&#xff1f; Spring B…...

mac下生成.icns图标

笔记原因&#xff1a; 今日需要在mac下开发涉及图标文件的使用及icons文件的生成&#xff0c;所以记录一下。 网络上都是一堆命令行需要打印太麻烦了&#xff0c;写一个一键脚本。 步骤一 将需要生成的png格式文件重命名为“pic.png” mv xxxx.png pic.png 步骤二 下载我…...

关于JS继承的七种方式和理解

1.原型链继承 function Fun1() {this.name parentthis.play [1, 2, 3] } function Fun2() {this.type child }Fun2.prototype new Fun1()let s1 new Fun2() let s2 new Fun2() s1.play.push(4) console.log(s1.play, s2.play) // [1, 2, 3, 4] [1, 2, 3, 4]可以看到两个…...

储能系统-系统架构

已更新系列文章包括104、61850、modbus 、单片机等&#xff0c;欢迎关注 IEC61850实现方案和测试-1-CSDN博客 快速了解104协议-CSDN博客 104调试工具2_104协议调试工具-CSDN博客 1 电池储能系统&#xff08;BESS&#xff09; 架构 电池储能系统主要包括、电池、pcs、本地控制…...

AI智算-k8s部署DeepSeek Janus-Pro-7B 多模态大模型

文章目录 简介环境依赖模型下载下载Janus库GPU环境镜像模型manifest调用Janus多模态文生图 简介 DeepSeek Janus Pro 作为一款强大的多模态理解与生成框架&#xff0c;正在成为研究人员和开发者的热门选择。本文将详细介绍如何在云原生k8s环境中部署配置和使用 DeepSeek Janus…...

【截图】selenium自动通过浏览器截取指定元素div的图片

【截图】selenium自动通过浏览器截取指定元素div的图片 思路 截取完整网页截图 通过元素的坐标 截图到指定位置的图片 前提是已经获取到 driver 了 # 定位目标divtarget_div driver.find_element(By.CLASS_NAME, headlines-right)# 获取div的位置和大小location target_div…...

如何导入第三方sdk | 引入第三方jar 包

0. 背景1. 上传私有仓库2. 使用本地文件系统 0. 背景 对接一些第三方功能&#xff0c;会拿到第三方的sdk&#xff0c;也就是jar包&#xff0c;如何导入呢 1. 上传私有仓库 最好的方式就是将第三方jar包&#xff0c;上传到私有的仓库&#xff0c;这样直接正常在pom引用即可如果只…...

HarmonyOS 5.0应用开发——ContentSlot的使用

【高心星出品】 文章目录 ContentSlot的使用使用方法案例运行结果 完整代码 ContentSlot的使用 用于渲染并管理Native层使用C-API创建的组件同时也支持ArkTS创建的NodeContent对象。 支持混合模式开发&#xff0c;当容器是ArkTS组件&#xff0c;子组件在Native侧创建时&#…...

C#常用集合优缺点对比

先上结论&#xff1a; 在C#中&#xff0c;链表、一维数组、字典、List<T>和ArrayList是常见的数据集合类型&#xff0c;它们各有优缺点&#xff0c;适用于不同的场景。以下是它们的比较&#xff1a; 1. 一维数组 (T[]) 优点&#xff1a; 性能高&#xff1a;数组在内存中…...

基于CLIP视觉语言大模型的行人重识别方法的简单框架设计

以下是一个基于CLIP视觉语言大模型的行人重识别方法的简单框架设计&#xff0c;用于数据集测试。我们将使用torch和clip库&#xff0c;假设数据集是一个包含行人图像的文件夹结构&#xff0c;每个子文件夹代表一个行人身份。 步骤概述 安装必要的库加载CLIP模型定义数据集类提…...

RabbitMQ 从入门到精通:从工作模式到集群部署实战(三)

文章目录 使用CLI管理RabbitMQrabbitmqctlrabbitmq-queuesrabbitmq-diagnosticsrabbitmq-pluginsrabbitmq-streamsrabbitmq-upgraderabbitmqadmin 使用CLI管理RabbitMQ RabbitMQ CLI 工具需要安装兼容的 Erlang/OTP版本。 这些工具假定系统区域设置为 UTF-8&#xff08;例如en…...

BurpSuite抓包与HTTP基础

文章目录 前言一、BurpSuite1.BurpSuite简介2.BurpSuite安装教程(1)BurpSuite安装与激活(2)安装 https 证书 3.BurpSuite使用4.BurpSuite资料 二、图解HTTP1.HTTP基础知识2.HTTP客户端请求消息3.HTTP服务端响应消息4.HTTP部分请求方法理解5.HTTPS与HTTP 总结 前言 在网络安全和…...

SQL Server 数据库迁移到 MySQL 的完整指南

文章目录 引言一、迁移前的准备工作1.1 确定迁移范围1.2 评估兼容性1.3 备份数据 二、迁移工具的选择2.1 使用 MySQL Workbench2.2 使用第三方工具2.3 手动迁移 三、迁移步骤3.1 导出 SQL Server 数据库结构3.2 转换数据类型和语法3.3 导入 MySQL 数据库3.4 迁移数据3.5 迁移存…...

【大模型】DeepSeek与chatGPT的区别以及自身的优势

目录 一、前言二、核心技术对比2.1 模型架构设计2.1.1 ChatGPT的Transformer架构2.1.2 DeepSeek的混合架构 2.2 训练数据体系2.2.1 ChatGPT的数据特征2.2.2 DeepSeek的数据策略 三、应用场景对比3.1 通用场景表现3.1.1 ChatGPT的强项领域3.2.2 DeepSeek的专项突破 3.3 响应效率…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发&#xff0c;实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构&#xff0c;服务器端使用Java Servlet处理请求&#xff0c;数据库采用MySQL存储信息&#xff0…...

作为测试我们应该关注redis哪些方面

1、功能测试 数据结构操作&#xff1a;验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化&#xff1a;测试aof和aof持久化机制&#xff0c;确保数据在开启后正确恢复。 事务&#xff1a;检查事务的原子性和回滚机制。 发布订阅&#xff1a;确保消息正确传递。 2、性…...