当前位置: 首页 > news >正文

基于CLIP视觉语言大模型的行人重识别方法的简单框架设计

以下是一个基于CLIP视觉语言大模型的行人重识别方法的简单框架设计,用于数据集测试。我们将使用torchclip库,假设数据集是一个包含行人图像的文件夹结构,每个子文件夹代表一个行人身份。

步骤概述

  1. 安装必要的库
  2. 加载CLIP模型
  3. 定义数据集类
  4. 提取图像特征
  5. 进行重识别测试

代码实现

import os
import torch
import clip
from torch.utils.data import Dataset, DataLoader
from PIL import Image
import numpy as np# 1. 安装必要的库
# 确保已经安装了torch, clip, pillow等库# 2. 加载CLIP模型
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)# 3. 定义数据集类
class PersonReIDDataset(Dataset):def __init__(self, root_dir, transform=None):self.root_dir = root_dirself.transform = transformself.images = []self.labels = []for label_idx, person_dir in enumerate(os.listdir(root_dir)):person_path = os.path.join(root_dir, person_dir)if os.path.isdir(person_path):for img_name in os.listdir(person_path):img_path = os.path.join(person_path, img_name)self.images.append(img_path)self.labels.append(label_idx)def __len__(self):return len(self.images)def __getitem__(self, idx):img_path = self.images[idx]image = Image.open(img_path).convert("RGB")label = self.labels[idx]if self.transform:image = self.transform(image)return image, label# 4. 提取图像特征
def extract_image_features(dataloader):all_features = []all_labels = []with torch.no_grad():for images, labels in dataloader:images = images.to(device)features = model.encode_image(images)features /= features.norm(dim=-1, keepdim=True)all_features.extend(features.cpu().numpy())all_labels.extend(labels.numpy())return np.array(all_features), np.array(all_labels)# 5. 进行重识别测试
def reid_test(query_features, gallery_features, query_labels, gallery_labels):num_queries = len(query_features)correct = 0for i in range(num_queries):query = query_features[i]query_label = query_labels[i]# 计算查询图像与所有画廊图像的相似度similarities = np.dot(gallery_features, query)# 找到最相似的图像索引most_similar_idx = np.argmax(similarities)# 获取最相似图像的标签predicted_label = gallery_labels[most_similar_idx]if predicted_label == query_label:correct += 1accuracy = correct / num_queriesreturn accuracy# 主函数
if __name__ == "__main__":# 数据集路径dataset_root = "path/to/your/dataset"# 创建数据集和数据加载器dataset = PersonReIDDataset(dataset_root, transform=preprocess)dataloader = DataLoader(dataset, batch_size=32, shuffle=False)# 提取图像特征features, labels = extract_image_features(dataloader)# 简单划分查询集和画廊集num_samples = len(features)num_queries = int(num_samples * 0.2)  # 20% 作为查询集query_features = features[:num_queries]query_labels = labels[:num_queries]gallery_features = features[num_queries:]gallery_labels = labels[num_queries:]# 进行重识别测试accuracy = reid_test(query_features, gallery_features, query_labels, gallery_labels)print(f"行人重识别准确率: {accuracy * 100:.2f}%")

代码解释

  1. 加载CLIP模型:使用clip.load函数加载预训练的CLIP模型和对应的图像预处理函数。
  2. 定义数据集类PersonReIDDataset类用于加载行人重识别数据集,将图像和对应的标签存储在列表中。
  3. 提取图像特征extract_image_features函数使用CLIP模型提取图像的特征,并进行归一化处理。
  4. 进行重识别测试reid_test函数计算查询图像与画廊图像的相似度,找到最相似的图像并判断是否匹配。
  5. 主函数:创建数据集和数据加载器,提取图像特征,划分查询集和画廊集,进行重识别测试并输出准确率。

使用方法

  1. 将上述代码复制到PyCharm中。
  2. 安装必要的库:pip install torch clip pillow
  3. dataset_root变量替换为你的数据集路径。
  4. 运行代码,即可得到行人重识别的准确率。

相关文章:

基于CLIP视觉语言大模型的行人重识别方法的简单框架设计

以下是一个基于CLIP视觉语言大模型的行人重识别方法的简单框架设计,用于数据集测试。我们将使用torch和clip库,假设数据集是一个包含行人图像的文件夹结构,每个子文件夹代表一个行人身份。 步骤概述 安装必要的库加载CLIP模型定义数据集类提…...

RabbitMQ 从入门到精通:从工作模式到集群部署实战(三)

文章目录 使用CLI管理RabbitMQrabbitmqctlrabbitmq-queuesrabbitmq-diagnosticsrabbitmq-pluginsrabbitmq-streamsrabbitmq-upgraderabbitmqadmin 使用CLI管理RabbitMQ RabbitMQ CLI 工具需要安装兼容的 Erlang/OTP版本。 这些工具假定系统区域设置为 UTF-8(例如en…...

BurpSuite抓包与HTTP基础

文章目录 前言一、BurpSuite1.BurpSuite简介2.BurpSuite安装教程(1)BurpSuite安装与激活(2)安装 https 证书 3.BurpSuite使用4.BurpSuite资料 二、图解HTTP1.HTTP基础知识2.HTTP客户端请求消息3.HTTP服务端响应消息4.HTTP部分请求方法理解5.HTTPS与HTTP 总结 前言 在网络安全和…...

SQL Server 数据库迁移到 MySQL 的完整指南

文章目录 引言一、迁移前的准备工作1.1 确定迁移范围1.2 评估兼容性1.3 备份数据 二、迁移工具的选择2.1 使用 MySQL Workbench2.2 使用第三方工具2.3 手动迁移 三、迁移步骤3.1 导出 SQL Server 数据库结构3.2 转换数据类型和语法3.3 导入 MySQL 数据库3.4 迁移数据3.5 迁移存…...

【大模型】DeepSeek与chatGPT的区别以及自身的优势

目录 一、前言二、核心技术对比2.1 模型架构设计2.1.1 ChatGPT的Transformer架构2.1.2 DeepSeek的混合架构 2.2 训练数据体系2.2.1 ChatGPT的数据特征2.2.2 DeepSeek的数据策略 三、应用场景对比3.1 通用场景表现3.1.1 ChatGPT的强项领域3.2.2 DeepSeek的专项突破 3.3 响应效率…...

DeepSeek:知识图谱与大模型参数化知识融合的创新架构

引言:AI 领域的融合趋势 在目前大模型与知识图谱作为两个重要的研究方向,各自展现出了强大的能力与潜力。大模型,凭借其在海量数据上的深度训练,拥有强大的语言理解与生成能力,能够处理多种自然语言处理任务&#xff0…...

ES6 迭代器 (`Iterator`)使用总结

Iterator(迭代器)是 ES6 引入的一种 接口,用于 顺序访问 可迭代对象(Array、Set、Map、String、arguments、自定义对象等)。 Iterator(迭代器)的作用有三个: 为各种数据结构提供一个…...

信用修复和失联修复的区别

失联修复和信用修复是两个不同的概念,在目的、操作方式和应用场景上都有所区别。 失联修复 失联修复主要是指在金融催收行业中,当债务人的联系方式(通常是手机号码)发生改变,导致无法联系到债务人时,催收公…...

2025蓝桥杯JAVA编程题练习Day3

1.黛玉泡茶【算法赛】 问题描述 话说林黛玉闲来无事,打算在潇湘馆摆个茶局,邀上宝钗、探春她们一起品茗赏花。黛玉素来讲究,用的茶杯也各有不同,大的小的,高的矮的,煞是好看。这不,她从柜子里…...

[论文阅读] Knowledge Fusion of Large Language Models

Knowledge Fusion of Large Language Models (FuseLLM) Methodology 整体Pipeline如下图所示 不同的动物代表不同的LLM。左边第一,第二分别是Ensemble以及Weight Merging方法。最右侧为本文提出的FuseLLM。 Ensemble: 融合多个models的预测结果,比如…...

deepseek来讲lua

Lua 是一种轻量级、高效、可嵌入的脚本语言,广泛应用于游戏开发、嵌入式系统、Web 服务器等领域。以下是 Lua 的主要特点和一些基本概念: 1. 特点 轻量级:Lua 的核心非常小,适合嵌入到其他应用程序中。高效:Lua 的执…...

探索 Spring Cloud Alibaba:开启微服务架构新时代

一、引言 在当今数字化浪潮中,软件系统的规模和复杂度不断攀升,传统的单体架构逐渐难以满足快速迭代、高并发处理以及灵活扩展的需求。微服务架构应运而生,它将一个大型的应用拆分成多个小型、自治的服务,每个服务专注于特定的业务…...

【数据结构】(6) LinkedList 链表

一、什么是链表 1、链表与顺序表对比 不同点LinkedListArrayList物理存储上不连续连续随机访问效率O(N)O(1)插入、删除效率O(1)O(N) 3、链表的分类 链表根据结构分类,可分为单向/双向、无头结点/有头节点、非循环/循环链表,这三组每组各取…...

【工具变量】上市公司企业渐进式创新程度及渐进式创新锁定数据(1991-2023年)

测算方式: 参考顶刊《经济研究》孙雅慧(2024)老师的做法,用当期创新和往期创新的内容重叠度作为衡量渐进式创新程度的合理指标。通过搜集海量专利摘要,测算当前专利申请和既有专利的内容相似度,反映企业在…...

07_任务状态——改进播放控制

一、声明 在05和06的程序里面可以达到的一个效果就是很完美的播放音乐,并且不会影响到其它任务的运行,但是这个代码有一个弊端就是要么创建任务从头开始播放要么就直接删除任务。 我们现在的程序就增加了音乐的暂停和恢复的功能,那么能够达到…...

【R语言】apply函数族

在R语言中使用循环操作时是使用自身来实现的,效率较低。所以R语言有一个符合其统计语言出身的特点:向量化。R语言中的向量化运用了底层的C语言,而C语言的效率比高层的R语言的效率高。 apply函数族主要是为了解决数据向量化运算的问题&#x…...

Retrieval-Augmented Generation,检索增强生成流程

RAG流程 用户输入接收 系统接收用户输入的查询问题或文本内容,例如“李白有哪些著名的作品?”用户输入可以通过自然语言处理(NLP)模型的输入端口或用户交互界面(如聊天应用、搜索引擎输入框等)接收。 查询…...

[AI][本地部署]离线升级后报ChromeDb错误

【背景】 升级了OpenWebUI,在离线环境下补足了很多需要的Package后终于成功启动了Backend的服务,但是一旦上传文件,就会报ChromaDb错误,少了Collection这一列云云。 【分析】 两个环境ChromaDb的版本不同,所以怀疑是…...

Pinocchio: 刚体动力学算法库介绍

Pinocchio 是一个高性能的开源刚体动力学计算库,广泛应用于机器人学研究与开发。它主要致力于提供高效、精确的运动学和动力学算法,实现机器人模型的建模、前向运动学、反向动力学、力动力学计算等功能。下面将详细介绍该库的一些关键特点和应用场景。 基…...

电商平台的设计与实现(代码+数据库+LW)

摘 要 如今社会上各行各业,都喜欢用自己行业的专属软件工作,互联网发展到这个时候,人们已经发现离不开了互联网。新技术的产生,往往能解决一些老技术的弊端问题。因为传统商品交易信息管理难度大,容错率低&#xff0…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)&#xff0…...

vscode(仍待补充)

写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

NPOI操作EXCEL文件 ——CAD C# 二次开发

缺点:dll.版本容易加载错误。CAD加载插件时&#xff0c;没有加载所有类库。插件运行过程中用到某个类库&#xff0c;会从CAD的安装目录找&#xff0c;找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库&#xff0c;就用插件程序加载进…...

C++_哈希表

本篇文章是对C学习的哈希表部分的学习分享 相信一定会对你有所帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、基础概念 1. 哈希核心思想&#xff1a; 哈希函数的作用&#xff1a;通过此函数建立一个Key与存储位置之间的映射关系。理想目标&#xff1a;实现…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现指南针功能

指南针功能是许多位置服务应用的基础功能之一。下面我将详细介绍如何在HarmonyOS 5中使用DevEco Studio实现指南针功能。 1. 开发环境准备 确保已安装DevEco Studio 3.1或更高版本确保项目使用的是HarmonyOS 5.0 SDK在项目的module.json5中配置必要的权限 2. 权限配置 在mo…...

2025年- H71-Lc179--39.组合总和(回溯,组合)--Java版

1.题目描述 2.思路 当前的元素可以重复使用。 &#xff08;1&#xff09;确定回溯算法函数的参数和返回值&#xff08;一般是void类型&#xff09; &#xff08;2&#xff09;因为是用递归实现的&#xff0c;所以我们要确定终止条件 &#xff08;3&#xff09;单层搜索逻辑 二…...