当前位置: 首页 > news >正文

STM32的HAL库开发---高级定时器---输出比较模式实验

一、高级定时器输出比较模式实验原理

定时器的输出比较模式总共有8种,本文使用其中的翻转模式,当TIMXCCR1=TIMXCNT时,翻转OC1REF的电平,OC1REF为输出参考信号,高电平有效,OC1REF信号连接到0C1上面,然后控制CH1输出,CH1通过IO口复用功能,连接到IO口上面,最后输出到外部。

计时器工作在递增模式:

当CNT的值不断递增,递增到于输出比较寄存器CCR1的值相同时,IO电平翻转,然后CNT值继续递增,递增到ARR时,产生计数器溢出事件,计数器值从0开始重新递增,通过这种方式产生方波或者称为PWM波。

周期:IO口输出高电平和低电平总和为一个方波周期,从图上可以看出,一个方波周期为两次计数器溢出的事件,也就是2*(ARR + 1)*t,t为计时器计一个数所需时间。

占空比:再翻转模式下,占空比固定为50%,不可以改变。

总结:PWM波周期或频率由ARR决定,占空比固定50%,相位由CCRX决定。

二、高级定时器输出比较模式实验配置步骤

1、HAL_TIM_OC_Init()函数,配置定时器基础工作参数。

2、HAL_TIM_OC_Msplnit()函数,配置NVIC、CLOCK、GPIO等

3、HAL_TIM_OC_Configchannel()函数,配置输出比较模式。

4、__HAL_TIM_ENABLE_OCxPRELOAD()宏定义,使能通道预装载。

5、HAL_TIM_OC_Start()函数,使能输出、主输出、计数器。

6、__HAL_TIM_SET_COMPARE()宏定义,修改捕获/比较寄存器的值。

三、高级定时器输出比较模式实验

实验:通过定时器8通道1/2/3/4输出相位分别为25%50%75%100%PWM

1、寄存器版本

#include "./BSP/TIMER/atim.h"//配置定时器8通道1 PC6、PC7、PC8、PC9为翻转模式输出
void Advanced_TIM_Init(void)
{//开启TIM8时钟RCC->APB2ENR |= (1 << 13);//开启ARR寄存器缓冲功能TIM8->CR1 |= (1 << 7);//设置PSC预分频系数TIM8->PSC = 71;//设置重装载寄存器值 配置PWM方波为500HZ//在翻转模式下 两个ARR溢出时间为PWM一个周期TIM8->ARR = (1000000 / (500 * 2)) - 1;/**************TIM8_CH1*****************///CC1S 设置捕获比较为输出模式TIM8->CCMR1 &= ~(0x03 << 0);//OC1PE 开启输出比较寄存器预装载功能TIM8->CCMR1 |= (1 << 3);//OC1M 设置为翻转模式TIM8->CCMR1 |= (0X03 << 4);TIM8->CCMR1 &= ~(1 << 6);//设置CCR1捕获/比较寄存器值 25%相位TIM8->CCR1 = 0.25 * (1000000 / (500 * 2)) - 1;//TIM8->CCR1 =1;//设置输出极性为高电平有效 CC1PTIM8->CCER &= ~(1 << 1);//使能输出比较 CC1ETIM8->CCER |= (1 << 0);/**************TIM8_CH2*****************///CC2S 设置捕获比较为输出模式TIM8->CCMR1 &= ~(0x03 << 8);//OC2PE 开启输出比较寄存器预装载功能TIM8->CCMR1 |= (1 << 11);//OC2M 设置为翻转模式TIM8->CCMR1 |= (0X03 << 12);TIM8->CCMR1 &= ~(1 << 14);		//设置CCR2捕获/比较寄存器值 50%相位TIM8->CCR2 = 0.50 * (1000000 / (500 * 2)) - 1;//设置输出极性为高电平有效 CC2PTIM8->CCER &= ~(1 << 5);//使能输出比较 CC2ETIM8->CCER |= (1 << 4);/**************TIM8_CH3*****************///CC3S 设置捕获比较为输出模式TIM8->CCMR2 &= ~(0x03 << 0);//OC3PE 开启输出比较寄存器预装载功能TIM8->CCMR2 |= (1 << 3);//OC3M 设置为翻转模式TIM8->CCMR2 |= (0X03 << 4);TIM8->CCMR2 &= ~(1 << 6);//设置CCR3捕获/比较寄存器值 75%相位TIM8->CCR3 = 0.75 * (1000000 / (500 * 2)) - 1;//设置输出极性为高电平有效 CC3PTIM8->CCER &= ~(1 << 9);//使能输出比较 CC3ETIM8->CCER |= (1 << 8);/**************TIM8_CH4*****************///CC4S 设置捕获比较为输出模式TIM8->CCMR2 &= ~(0x03 << 8);//OC4PE 开启输出比较寄存器预装载功能TIM8->CCMR2 |= (1 << 11);//OC4M 设置为翻转模式TIM8->CCMR2 |= (0X03 << 12);TIM8->CCMR2 &= ~(1 << 14);	//设置CCR4捕获/比较寄存器值 100%相位TIM8->CCR4 = 1 * (1000000 / (500 * 2)) - 1;//设置输出极性为高电平有效 CC4PTIM8->CCER &= ~(1 << 13);//使能输出比较 CC4ETIM8->CCER |= (1 << 12);//软件更新事件  主要为将PSC的值转移到影子寄存器里边TIM8->EGR |= (1 << 0);//MOE 开启主输出TIM8->BDTR |= (1 << 15);//开启GPIOC时钟RCC->APB2ENR |= (1 << 4);//设置PC6为复用推挽输出GPIOC->CRL |= (0X03 << 24);GPIOC->CRL |= (1 << 27);GPIOC->CRL &= ~(1 << 26);//设置PC7为复用推挽输出GPIOC->CRL |= (0X03 << 28);GPIOC->CRL |= (1 << 31);GPIOC->CRL &= ~(1 << 30);//设置PC8为复用推挽输出GPIOC->CRH |= (0X03 << 0);GPIOC->CRH |= (1 << 3);GPIOC->CRH &= ~(1 << 2);//设置PC9为复用推挽输出GPIOC->CRH |= (0X03 << 4);GPIOC->CRH |= (1 << 7);GPIOC->CRH &= ~(1 << 6);//使能计数器TIM8->CR1 |= (1 << 0);	}

2、库函数版本

 atim.h头文件程序

#ifndef __ATIM_H
#define __ATIM_H#include "stm32f1xx.h"
void Advanced_TIM_Init(void);#endif

atim.c

#include "./BSP/TIMER/atim.h"//配置定时器8通道1 PC6为翻转模式输出
TIM_HandleTypeDef htim;
void Advanced_TIM_Init(void)
{htim.Instance = TIM8;htim.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;htim.Init.CounterMode = TIM_COUNTERMODE_UP;htim.Init.Period = 1000000/(500 * 2) - 1;htim.Init.Prescaler = 71;HAL_TIM_OC_Init(&htim);TIM_OC_InitTypeDef sConfig = {0};sConfig.OCMode = TIM_OCMODE_TOGGLE;sConfig.OCPolarity = TIM_OCPOLARITY_HIGH;sConfig.Pulse =  0.25 * (TIM8->ARR + 1) - 1;//配置TIM8 CH1为翻转输出模式HAL_TIM_OC_ConfigChannel(&htim,&sConfig,TIM_CHANNEL_1);//配置TIM8 CH2为翻转输出模式sConfig.Pulse = 0.50 * (TIM8->ARR + 1) - 1;HAL_TIM_OC_ConfigChannel(&htim,&sConfig,TIM_CHANNEL_2);//配置TIM8 CH3为翻转输出模式sConfig.Pulse = 0.75 * (TIM8->ARR + 1) - 1;HAL_TIM_OC_ConfigChannel(&htim,&sConfig,TIM_CHANNEL_3);//配置TIM8 CH4为翻转输出模式sConfig.Pulse = 1 * TIM8->ARR;HAL_TIM_OC_ConfigChannel(&htim,&sConfig,TIM_CHANNEL_4);//使能捕获/比较寄存器通道1预装载__HAL_TIM_ENABLE_OCxPRELOAD(&htim,TIM_CHANNEL_1);//使能捕获/比较寄存器通道2预装载__HAL_TIM_ENABLE_OCxPRELOAD(&htim,TIM_CHANNEL_2);//使能捕获/比较寄存器通道3预装载__HAL_TIM_ENABLE_OCxPRELOAD(&htim,TIM_CHANNEL_3);//使能捕获/比较寄存器通道4预装载__HAL_TIM_ENABLE_OCxPRELOAD(&htim,TIM_CHANNEL_4);TIM8->EGR |= (1 << 0);//启动TIM8 CH1计数器 主输出 输出比较HAL_TIM_OC_Start(&htim, TIM_CHANNEL_1);//启动TIM8 CH2计数器 主输出 输出比较HAL_TIM_OC_Start(&htim, TIM_CHANNEL_2);//启动TIM8 CH3计数器 主输出 输出比较HAL_TIM_OC_Start(&htim, TIM_CHANNEL_3);//启动TIM8 CH4计数器 主输出 输出比较HAL_TIM_OC_Start(&htim, TIM_CHANNEL_4);
}void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim)
{//开启定时器8时钟__HAL_RCC_TIM8_CLK_ENABLE();//开启GPIOC时钟__HAL_RCC_GPIOC_CLK_ENABLE();GPIO_InitTypeDef GPIO_Init = {0};GPIO_Init.Mode = GPIO_MODE_AF_PP;GPIO_Init.Pin = GPIO_PIN_6;//设置为输出模式时 这个没有用 可以不写 GPIO_Init.Pull = GPIO_NOPULL;GPIO_Init.Speed = GPIO_SPEED_FREQ_HIGH;//设置PC6为复用推挽输出HAL_GPIO_Init(GPIOC, &GPIO_Init);GPIO_Init.Pin = GPIO_PIN_7;//设置PC7为复用推挽输出HAL_GPIO_Init(GPIOC, &GPIO_Init);GPIO_Init.Pin = GPIO_PIN_8;//设置PC8为复用推挽输出HAL_GPIO_Init(GPIOC, &GPIO_Init);GPIO_Init.Pin = GPIO_PIN_9;//设置PC9为复用推挽输出HAL_GPIO_Init(GPIOC, &GPIO_Init);}

 main.c主函数程序

#include "./SYSTEM/sys/sys.h"
#include "./SYSTEM/usart/usart.h"
#include "./SYSTEM/delay/delay.h"
#include "./BSP/LED/led.h"
#include "./BSP/TIMER/atim.h"extern TIM_HandleTypeDef htim;
int main(void)
{HAL_Init();                         /* 初始化HAL库 */sys_stm32_clock_init(RCC_PLL_MUL9); /* 设置时钟, 72Mhz */delay_init(72);                     /* 延时初始化 */led_Init();                         /* LED初始化 */Advanced_TIM_Init();				//高级定时器初始化
//	__HAL_TIM_SET_COMPARE(&htim, TIM_CHANNEL_1, 0);
//    __HAL_TIM_SET_COMPARE(&htim, TIM_CHANNEL_2, 500 - 1);
//    __HAL_TIM_SET_COMPARE(&htim, TIM_CHANNEL_3, 750 - 1);
//    __HAL_TIM_SET_COMPARE(&htim, TIM_CHANNEL_4, 1000 - 1);while(1){ LED0(1);LED1(0);delay_ms(500);LED0(0);LED1(1);delay_ms(500);}
}

在配置过程中发现,如果捕获比较寄存器的值在初始化的时候设置成0,会导致相位错误,设置成1就不会。但是在初始化之后再将比较寄存器的值设置成0,相位正确。这个问题具体原因还没找到,如果有人有思路,可以私信我。 

相关文章:

STM32的HAL库开发---高级定时器---输出比较模式实验

一、高级定时器输出比较模式实验原理 定时器的输出比较模式总共有8种&#xff0c;本文使用其中的翻转模式&#xff0c;当TIMXCCR1TIMXCNT时&#xff0c;翻转OC1REF的电平&#xff0c;OC1REF为输出参考信号&#xff0c;高电平有效&#xff0c;OC1REF信号连接到0C1上面&#xff…...

python Excel 表读取合并单元格以及清除空格符

读取合并单元格并保留合并信息 读取合并单元格并保留合并信息清除各单元格的空格和换行符&#xff0c;并去除列名中的空格和换行符 读取合并单元格并保留合并信息 当我们只是使用 pandas 的 read_excel 方法读取 Excel 文件时&#xff0c;我们可能会遇到一个很棘手的问题&…...

额外题目汇总2-链表

链表 1.24. 两两交换链表中的节点 力扣题目链接(opens new window) 给定一个链表&#xff0c;两两交换其中相邻的节点&#xff0c;并返回交换后的链表。 你不能只是单纯的改变节点内部的值&#xff0c;而是需要实际的进行节点交换。 思路 使用虚拟头结点会很方便&#xff…...

C#控件开发6—指示灯

按钮功能&#xff1a;手自动旋转&#xff0c;标签文本显示、点击二次弹框确认&#xff08;源码在最后边&#xff09;&#xff1b; 【制作方法】 找到控件的中心坐标&#xff0c;画背景外环、内圆&#xff1b;再绘制矩形开关&#xff0c;进行角度旋转即可获得&#xff1b; 【关…...

探索从传统检索增强生成(RAG)到缓存增强生成(CAG)的转变

在人工智能快速发展的当下&#xff0c;大型语言模型&#xff08;LLMs&#xff09;已成为众多应用的核心技术。检索增强生成&#xff08;RAG&#xff09;&#xff08;RAG 系统从 POC 到生产应用&#xff1a;全面解析与实践指南&#xff09;和缓存增强生成&#xff08;CAG&#x…...

【学习总结|DAY036】Vue工程化+ElementPlus

引言 在前端开发领域&#xff0c;Vue 作为一款流行的 JavaScript 框架&#xff0c;结合 ElementPlus 组件库&#xff0c;为开发者提供了强大的构建用户界面的能力。本文将结合学习内容&#xff0c;详细介绍 Vue 工程化开发流程以及 ElementPlus 的使用&#xff0c;助力开发者快…...

【GitHub】GitHub 2FA 双因素认证 ( 使用 Microsoft Authenticator 应用进行二次验证 )

文章目录 一、GitHub 的 2FA 双因素认证二、使用 Microsoft Authenticator 应用进行二次验证1、TOTP 应用2、下载 Microsoft Authenticator 应用3、安装使用 Authenticator 应用 三、恢复码重要性 一、GitHub 的 2FA 双因素认证 现在登录 GitHub 需要进行二次身份验证 ; 先登录…...

c# 2025/2/7 周五

13.《表达式&#xff0c;语句详解1》 18未完。。 表达式&#xff0c;语句详解_1_哔哩哔哩_bilibili...

蓝桥杯思维训练(五)

文章目录 子集II1191.K次串联后最大子数组之和 子集II 子集II 思路分析&#xff1a; 求解子集的问题的关键就是&#xff0c;通过递归与回溯&#xff0c;我们就是得确定以某个元素开始的子集&#xff0c;对于这个题目来说&#xff0c;比较麻烦的一点就是&#xff0c;存在重复的…...

I.MX6ULL 中断介绍下

GIC重点寄存器 1.中断分发器寄存器&#xff08;Distributor register &#xff09; a.Distributor Control Register(中断分发控制寄存器), GICD_CTLR Purpose Enables the forwarding of pending interrupts from the Distributor to the CPU interfaces 使能将挂起的中断从…...

Elasticsearch 生产集群部署终极方案

Elasticsearch 集群部署 1.集群部署1.1 新增用户1.2 优化操作系统1.3 JDK1.4 elasticsearch1.5 开机自启动 2.安全认证功能2.1 生成CA证书2.2 生成密钥2.3 上传至其他节点2.4 修改属主、属组2.5 配置文件添加参数2.6 各节点添加密钥库密码2.7 设置用户密码 1.集群部署 1.1 新增…...

Python用langchain、OpenAI大语言模型LLM情感分析苹果股票新闻数据及提示工程优化应用...

全文链接&#xff1a;https://tecdat.cn/?p39614 本文主要探讨了如何利用大语言模型&#xff08;LLMs&#xff09;进行股票分析。通过使用提供的股票市场和金融新闻获取数据&#xff0c;结合Python中的相关库&#xff0c;如Pandas、langchain等&#xff0c;实现对股票新闻的情…...

【正点原子K210连载】第六十七章 音频FFT实验 摘自【正点原子】DNK210使用指南-CanMV版指南

第六十七章 音频FFT实验 本章将介绍CanMV下FFT的应用&#xff0c;通过将时域采集到的音频数据通过FFT为频域。通过本章的学习&#xff0c;读者将学习到CanMV下控制FFT加速器进行FFT的使用。 本章分为如下几个小节&#xff1a; 32.1 maix.FFT模块介绍 32.2 硬件设计 32.3 程序设…...

Centos Ollama + Deepseek-r1+Chatbox运行环境搭建

Centos Ollama Deepseek-r1Chatbox运行环境搭建 内容介绍下载ollama在Ollama运行DeepSeek-r1模型使用chatbox连接ollama api 内容介绍 你好&#xff01; 这篇文章简单讲述一下如何在linux环境搭建 Ollama Deepseek-r1。并在本地安装的Chatbox中进行远程调用 下载ollama 登…...

ReactNative进阶(五十九):存量 react-native 项目适配 HarmonyOS NEXT

文章目录 一、前言二、ohos_react_native2.1 Fabric2.2 TurboModule2.2.1 ArkTSTurboModule2.2.2 cxxTurboModule&#xff1a; 三、拓展阅读 一、前言 2024年10月22日19:00&#xff0c;华为在深圳举办“原生鸿蒙之夜暨华为全场景新品发布会”&#xff0c;主题为“星河璀璨&…...

go并发和并行

进程和线程 进程&#xff08;Process&#xff09;就是程序在操作系统中的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff0c;进程是一个动态概念&#xff0c;是程序在执行过程中分配和管理资源的基本单位&#xff0c;每一个进程都有一个自己的地址空间。…...

一种解决SoC总线功能验证完备性的技术

1. 前言 通过总线将各个IP通过总线连接起来的SoC芯片是未来的大趋势&#xff0c;也是缩短芯片开发周期&#xff0c;抢先进入市场的常用方法。如何确保各个IP是否正确连接到总线上&#xff0c;而且各IP的地址空间分配是否正确&#xff0c;是一件很棘手的事情。本文提出了一种新…...

Web3 与区块链:开启透明、安全的网络新时代

在这个信息爆炸的时代&#xff0c;我们对网络的透明性、安全性和隐私保护的需求日益增长。Web3&#xff0c;作为新一代互联网的代表&#xff0c;正携手区块链技术&#xff0c;引领我们走向一个更加透明、安全和去中心化的网络世界。本文将深入探讨 Web3 的基本概念、区块链技术…...

c#中Thread.Join()方法的经典示例

在 C# 中&#xff0c;Thread.Join 是一个非常有用的方法&#xff0c;它可以让主线程&#xff08;调用线程&#xff09;等待子线程&#xff08;被调用线程&#xff09;执行完毕后再继续执行。 1、经典示例1 using System; using System.Threading;public class Example {stati…...

深入了解越权漏洞:概念、危害与防范

前言 越权漏洞作为一种常见且极具威胁的安全隐患&#xff0c;就像隐藏在暗处的 “黑客帮凶”&#xff0c;时刻威胁着我们的数据安全和隐私。就让我们一起揭开越权漏洞的神秘面纱&#xff0c;深入了解它的来龙去脉、危害以及应对之策。 一、什么是越权漏洞 想象一下&#xff0…...

Linux命令基础(2)

su和exit命令 可以通过su命令切换到root账户 语法&#xff1a;su [-] 用户名 -符号是可选的&#xff0c;表示是否在切换用户后加载环境变量&#xff0c;建议带上 参数&#xff1a;用户名&#xff0c;表示要切换的用户&#xff0c;用户名可以省略&#xff0c;省略表示切换到ro…...

从零开始开发纯血鸿蒙应用之网络检测

从零开始开发纯血鸿蒙应用 〇、前言一、认识 connection 模块1、获取默认网络2、获取网络能力信息3、解析网络能力信息3.1、NetCap3.2、NetBearType 二、实现网络检测功能1、申请权限2、获取默认网路的 NetCap 数组 三、总结 〇、前言 在之前的博文里&#xff0c;介绍了如何实…...

增量式网络爬虫通用模板

之前做过一个项目&#xff0c;他要求是只爬取新产生的或者已经更新的页面&#xff0c;避免重复爬取未变化的页面&#xff0c;从而节省资源和时间。这里我需要设计一个增量式网络爬虫的通用模板。可以继承该类并重写部分方法以实现特定的解析和数据处理逻辑。这样可以更好的节约…...

ubuntu opencv 安装

1.ubuntu opencv 安装 在Ubuntu系统中安装OpenCV&#xff0c;可以通过多种方式进行&#xff0c;以下是一种常用的安装方法&#xff0c;包括从源代码编译安装。请注意&#xff0c;安装步骤可能会因OpenCV的版本和Ubuntu系统的具体版本而略有不同。 一、安装准备 更新系统&…...

服务器信任质询

NSURLSession 与 NSURLAuthenticationMethodServerTrust —— 从零开始的“服务器信任质询”全流程 目标读者&#xff1a;刚接触 iOS 网络开发、准备理解 HTTPS 与证书校验细节的同学 出发点&#xff1a;搞清楚为什么会有“质询”、质询的触发时机、以及在 delegate 里怎么正确…...

[蓝桥杯]采油

采油 题目描述 LQ 公司是世界著名的石油公司&#xff0c;为世界供应优质石油。 最近&#xff0c;LQ 公司又在森林里发现了一大片区域的油田&#xff0c;可以在这个油田中开采 nn 个油井。 LQ 公司在这 nn 个油井之间修建了 n−1n−1 条道路&#xff0c;每条道路连接两个油井…...

OS11.【Linux】vim文本编辑器

目录 1.四种模式 命令模式 几个命令 插入模式 底行模式 一图展示三种模式之间的关系 2.分屏(多文件操作) 3.配置vim的原理 4.脚本一键配置vim CentOS 7 x86_64 其他发行版 5.NeoVim(推荐) vim文本编辑器是一个多模式的编辑器,因此先介绍它的四种模式 附vim的官网:…...

【Zephyr 系列 11】使用 NVS 实现 BLE 参数持久化:掉电不丢配置,开机自动加载

🧠关键词:Zephyr、NVS、非易失存储、掉电保持、Flash、AT命令保存、配置管理 📌目标读者:希望在 BLE 模块中实现掉电不丢配置、支持产测参数注入与自动加载功能的开发者 📊文章长度:约 5200 字 🔍 为什么要使用 NVS? 在实际产品中,我们经常面临以下场景: 用户或…...

Unity3D仿星露谷物语开发60之定制角色其他部位

1、目标 上一篇中定制了角色的衬衫、手臂。 本篇中将定制角色其他部位的图形&#xff0c;包括&#xff1a;裤子、发型、皮肤、帽子等。 2、定制裤子 &#xff08;1&#xff09;修改ApplyCharacterCustomisation.cs脚本 我们需要设置一个输入框选择裤子的颜色。 // Select …...

web前端开发如何适配各分辨率

在开发Web应用时&#xff0c;适配不同的显示器分辨率是确保用户体验一致性的关键。以下是一些常见的显示器分辨率。 常见的显示器分辨率 PC屏幕分辨率 1366 x 768&#xff1a;普通液晶显示器 1920 x 1080&#xff1a;高清液晶显示器 2560 x 1440&#xff1a;2K高清显示器 4096…...