机器学习 - 需要了解的条件概率、高斯分布、似然函数
似然函数是连接数据与参数的桥梁,通过“数据反推参数”的逆向思维,成为统计推断的核心工具。理解它的关键在于区分“参数固定时数据的概率”与“数据固定时参数的合理性”,这种视角转换是掌握现代统计学和机器学习的基础。
一、在学习似然函数之前,我们需要弄懂什么是条件概率
概率是指在事件 B 已经发生的前提下,事件 A 发生的概率,记作 P(A|B),读作“在 B 发生的条件下 A 发生的概率”。其定义为:

其中,P(A ∩ B)表示事件 A 和事件 B 同时发生的概率,P(B) 表示事件 B 发生的概率。需要注意的是,P(B)必须大于零,否则条件概率无法定义。
示例:
一个标准的52张扑克牌堆,问从中随机抽取一张牌,这张牌是红心的概率是多少?这是一个无条件概率问题,答案(红心) = 13/52 = 1/4。
现在,假设已知抽到的牌是一张(或方片),在此条件下,这张牌是红心的条件概率是多少?这是一个条件概率问题。
设事件 A 为“抽到红心”,事件 B 为“抽到红色牌”,则:
- P(A ∩ B) = P(红心) = 13/52
- P(B) = P(红心或方片) = 26/52 = 1/2
因此,条件概率 P(A|B) 为:

需要注意的是,条件概率 P(A|B) 与 P(B|A) 一般不相等。例如,在上述例子中,P(红心|红色牌) = 1/2,而 P(红色牌|红心) = 1,因为在抽到红心的情况下,必然是一张红色牌。
条件概率在统计学、概率论以及机器学习等领域有广泛的应用,特别是在贝叶斯定理中,条件概率是核心概念之一。
二、还需要弄懂什么是高斯分布?
(一)高斯分布
高斯分布(也称为正态分布)是统计学中最常见的连续概率分布之一。其概率密度函数呈对称的钟形曲线,描述了数据在均值附近的集中程度。高斯分然科学和社会科学中广泛应用,常用于表示未知的随机变量。
概率密度函数:
对于均值为 μ、标准差为 σ 的高斯分布,其概率密度函数为:

其中,μ 决定了分布的位置,σ 决定了分布的幅度。
标准正态分布: μ = 0、σ = 1 时,标准正态分布,其概率密度函数为:

性质:
-
**对称性:*斯分布关于均值 μ 对称。
-
68-95-99.7 规则: 在高斯分布中,约68%的数据位于均值±1σ范围内,约95%位于均值±2σ范围内,约99.7%位于均值±3σ范围内。
在三维视图中,二维高斯分布的概率密度函数图像类似于一个倒置的碗,中心最高,向四周逐渐降低。其数学表达式为::

应用:
高斯分布在统计学中具有重要地位,常用于描述自然和社会科学中的随机变量。例如,在测量误差分析中,假设误差服从高斯分布可以简化分析过程。
此外,根据中心极限定理,当对大量独立同分布的随机变量求和时,其和的分布趋近于高斯分布,这使得高斯分布在统计推断中尤为重要。
需要注意的是,虽然高斯分布在理论和应用中广泛存在,但并非所有数据都服从高斯分布。在进行数据分析时,应首先检验数据的分布特性,以选择适当的统计模型。
为了直观理解,我们来看一下高斯分布对应的图像:
高斯分布(也称为正态分布)的图像呈现为对称的钟形曲线,其形状由均值(μ)和标准差(σ)决定。均值 μ 确定曲线的中心位置,标准差 σ 控制曲线的宽度和高度。标准差越小,曲线越陡峭;标准差越大,曲线越平坦。





(二)形象理解高斯分布
1. 直观比喻
想象你在测量一群人的身高:
-
高斯分布:大部分人的身高集中在某个平均值附近(如170cm),极端高或矮的人较少。
-
观测数据 y:每次测量的身高值(如169cm、171cm、168cm等)。
-
假设 y 服从高斯分布:意味着这些测量值围绕某个“中心值”波动,且波动规律符合高斯分布的形状(钟形曲线)。
2. 具体场景
以线性回归为例:

三、然后来掌握什么是似然函数
1.认识连乘运算符“∏”的用法:

2.了解独立同分布的意义:
在概率论与统计学中,独立同分布(Independent and Identically Distributed,简称 i.i.d.)指一组随机变量彼此独立,且服从相同的概率分布。这意味着每个随机变量的取值不会影响其他变量的取值,并且它们具有相同的分布特性。
独立:随机变量之间互不影响,即一个变量的取值不依赖于其他变量的取值。
同分布:所有随机变量遵循相同的概率分布,具有相同的分布函数、期望值和方差等统计特性。
示例:
-
抛硬币实验:假设我们进行多次抛硬币实验,每次记录硬币正面朝上的结果。每次抛掷都是独立的(一次抛掷的结果不影响另一次),且每次抛掷的结果服从相同的分布(正面和反面的概率相同)。因此,这些抛掷结果构成一组独立同分布的随机变量。
-
掷骰子实验:假设我们多次掷骰子,每次记录掷出的点数。每次掷骰子都是独立的,且每次的结果服从相同的分布(每个点数出现的概率相同)。因此,这些掷骰子的结果也是独立同分布的随机变量。
独立同分布是许多统计推断和机器学习方法的基础假设。例如,在训练机器学习模型时,通常假设训练数据是从同一分布中独立采样的,以确保模型对新数据的有效性。
需要注意的是,独立同分布并不意味着每个事件发生的概率都相同,而是指随机变量之间相互独立,并且遵循相同的概率分布。
3.认识似然函数
(1)似然函数的概念
给定一组独立同分布的数据样本 x1,x2,...,xn,假设它们服从高斯分布,则似然函数表示在给定参数(μ, σ²)下,观测到这组数据的概率。

由于对数函数是单调递增的,通常对似然函数取对数,得到对数似然函数:

通过最大化对数似然函数,可以估计参数μ和σ²的值。
因此,似然函数和高斯分布的关系在于,假设数据服从高斯分布时,似然函数基于高斯分布的概率密度函数构建,用于估计分布的参数。
定义:
似然函数是统计学中用来 “衡量模型参数在已知数据下的合理性” 的工具。简单来说,它通过观测到的数据,告诉我们 “不同参数值对产生这些数据的可能性有多大”。
核心思想:逆向思维
-
概率:已知参数 → 预测数据可能性
(例:已知硬币是公平的(参数θ=0.5),抛10次出现6次正面的概率是多少?) -
似然:已知数据 → 推测参数可能性
(例:抛10次硬币观察到6次正面,此时参数θ=0.5的“似然值”有多大?θ=0.6呢?)
类比:
-
概率:天气预报说“明天下雨的概率70%” → 预测未来。
-
似然:今天下雨了 → 推测“气象台模型参数设置是否合理”。
数学形式

(2)如何理解“似然”


(3)最大似然估计(MLE)

(4)关键区别:似然 vs 概率

(5)常见误区和实际应用场景:
-
误区1:认为“似然值高”等于“参数正确”。
→ 实际只能说明“参数对当前数据更合理”。 -
误区2:混淆似然函数与后验概率。
→ 后验概率 = 似然 × 先验概率(需贝叶斯框架)。 -
误区3:忽略数据的独立性假设。
→ 若数据不独立,联合似然的乘积形式不成立。
-
参数估计:如线性回归、逻辑回归中的MLE。
-
模型选择:通过比较不同模型的似然值(如AIC准则)。
-
假设检验:构建似然比检验(Likelihood Ratio Test)。
这篇文章,我整理了学习最大似然估计之前的基础知识,在掌握了这些知识之后,我们下一步进行学习线性回归中,求最优参数的最大似然估计的方法。
相关文章:
机器学习 - 需要了解的条件概率、高斯分布、似然函数
似然函数是连接数据与参数的桥梁,通过“数据反推参数”的逆向思维,成为统计推断的核心工具。理解它的关键在于区分“参数固定时数据的概率”与“数据固定时参数的合理性”,这种视角转换是掌握现代统计学和机器学习的基础。 一、在学习似然函…...
Spring Boot Web 入门
目录 Spring Boot Web 是 Spring Boot 框架的一个重要模块,它简化了基于 Spring 的 Web 应用程序的开发过程。以下是一个 Spring Boot Web 项目的入门指南,涵盖了项目创建、代码编写、运行等关键步骤。 1. 项目创建 使用 Spring Initializr 使用 IDE …...
神经网络|(八)概率论基础知识-二项分布及python仿真
【1】引言 前序已经学习了古典概型、条件概率、全概率公式和贝叶斯公式,它们作为基础,解释了事件发生及其概率的对应关系,相关文章链接为: 神经网络|(四)概率论基础知识-古典概型-CSDN博客 神经网络|(五)概率论基础知识-条件概…...
【面试场景】MySQL分布式主键选取
文章目录 一. MySQL的自增主键二. UUID三. 雪花ID(推荐) 我的博客地址 一. MySQL的自增主键 适合单表的情况, 在分布式分库分表下可能会有一些问题 主键冲突问题 在分布式系统中,多个数据库节点独立生成自增主键,很容易出现重复的主键值。例如ÿ…...
执行git stash drop stash@{x} 时出现error: unknown switch `e‘ 的解决方式
原因: 在 PowerShell 或某些 Shell 中,{} 是特殊符号,stash{0} 会被解析成 stash 0,而 后的字符可能被误认为选项(如 -e),使 Git 收到意外的 -e 参数,导致报错 unknown switch ‘e’。 解决方…...
链表和 list
一、单链表的模拟实现 1.实现方式 链表的实现方式分为动态实现和静态实现两种。 动态实现是通过 new 申请结点,然后通过 delete 释放结点的形式构造链表。这种实现方式最能体 现链表的特性; 静态实现是利用两个数组配合来模拟链表。一个表示数据域&am…...
windows 蓝牙驱动开发-传输总线驱动程序常见问题
以下是驱动程序开发人员在开发总线驱动程序以支持蓝牙功能时可能会遇到的一些常见问题和方案。 我的串行总线驱动程序遇到了一些错误。 它意味着什么? 代码 10-49:设备管理器生成的错误代码。 代码 51:当串行总线驱动程序具有相关的控制器…...
Qt修仙之路2-1 炼丹初成
widget.cpp #include "widget.h" #include<QDebug> //实现槽函数 void Widget::login1() {QString userusername_input->text();QString passpassword_input->text();//如果不勾选无法登入if(!check->isChecked()){qDebug()<<"xxx"&…...
【含开题报告+文档+PPT+源码】基于SpringBoot+Vue宠物预约上门服务预约平台
开题报告 本研究论文旨在构建并阐述一个基于 SpringBoot 和 Vue 技术栈开发的宠物上门服务预约平台的设计与实现。该平台集成了丰富的功能模块,为用户提供一体化的便捷服务体验。首先,用户能够通过注册并登录系统,享受个性化的服务流程。在平…...
无线AP之详解(Detailed Explanation of Wireless AP)
无线AP是什么? 市场上的AP基本上分为两大类:单纯型AP和扩展型AP。扩展型AP除了基本的AP功能之外,还可能带有若干以太网交换口、路由、NAT、DHCP、打印服务器等功能。 无线AP也就是一个无线交换机 无线路由器就是一个带路由功能的无线AP&am…...
Spring Boot Actuator与JMX集成实战
在微服务架构中,监控和管理应用的运行状态是至关重要的。Spring Boot Actuator 提供了一种便捷的方式来监控和管理 Spring Boot 应用,而 JMX(Java Management Extensions)则是一种用于管理 Java 应用的标准技术。本文将通过一个实…...
mac环境下,ollama+deepseek+cherry studio+chatbox本地部署
春节期间,deepseek迅速火爆全网,然后回来上班,我就浅浅的学习一下,然后这里总结一下,我学习中,总结的一些知识点吧,分享给大家。具体的深度安装部署,这里不做赘述,因为网…...
camera光心检测算法
1.概要 光心检测算法,基于opencv c实现,便于模组厂快速集成到软件工具中,适用于camera模组厂算法评估组装制程镜头与sensor的偏心程度,便于工程师了解制程的问题找出改善方向。 2.技术介绍 下图为camera模组厂抓取的bayer-raw经过…...
【MySQL】向后兼容设计规范(无回滚场景)
MySQL 向后兼容设计规范(无回滚场景) 在 不支持数据库回滚 且需保证 长期向后兼容性 的系统中,需通过 架构设计 和 流程管控 规避风险。以下是关键设计规范: 一、变更流程规范 变更分类分级 变更类型风险评估等级审批流程测试要求…...
还搞不透stm32单片机启动过程?一篇文章几百字让你彻底看懂!
1.stm32启动 1.1 msp和pc的初始值,第一步: 2.boot的值就被锁定了 可以根据实际绑定的值变动, 这里补充一点boot1和0的原理: 1.2来点刺激的: 这里我插入一个链接: 【明解STM32】一文搞明白STM32芯片存储…...
无界构建微前端?NO!NO!NO!多系统融合思路!
文章目录 微前端理解1、微前端概念2、微前端特性3、微前端方案a、iframeb、qiankun --> 使用比较复杂 --> 自己写对vite的插件c、micro-app --> 京东开发 --> 对vite支持更拉跨d、EMP 方案--> 必须使用 webpack5 --> 很多人感觉不是微前端 --> 去中心化方…...
DeepSeek辅助段落扩写的能力怎么样?
DeepSeek-R1在学术写作的诸多细节层面展现出了显著的应用价值。接下来我们将通过一系列具体案例,深入探讨该工具如何在扩写、翻译、发表以及内容改进等关键环节为学术写作提供有力支持。在提问环节,DeepSeek-R1能够高效地简化提示词,并精准地…...
分形的魅力:数学与艺术的完美结合
分形的魅力:数学与艺术的完美结合 分形(Fractal)是一种神奇的数学结构,它以其无限的复杂性和自相似性吸引了无数科学家、艺术家和数学爱好者。分形不仅仅是数学中的一个概念,它还广泛应用于自然科学、计算机图形学和艺…...
如何通过工业智能网关进行数控机床数据采集?
数控机床数据采集过程是一个从物理连接到数据处理的完整链条,涉及设备连接、数据采集、预处理和传输的复杂过程,包含通信协议匹配、设备配置、数据采集设置、数据预处理和传输等多个环节。天拓四方自主研发的TDE工业智能网关作为这一过程中的核心设备&am…...
水波效果
水波效果指在计算机图形学中模拟水面波纹的视觉效果,通常用于游戏、动画或者其他虚拟场景中。主要用于体现水体的动态感,比如水的波动、反射、折射、透明等,可以让人感觉像真实的水一样流动闪耀。 核心特点就是: 动态波纹光学特…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...
【Linux】C语言执行shell指令
在C语言中执行Shell指令 在C语言中,有几种方法可以执行Shell指令: 1. 使用system()函数 这是最简单的方法,包含在stdlib.h头文件中: #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...
