【Block总结】PSA,金字塔挤压注意力,解决传统注意力机制在捕获多尺度特征时的局限性
论文信息
- 标题: EPSANet: An Efficient Pyramid Squeeze Attention Block on Convolutional Neural Network
- 论文链接: arXiv
- GitHub链接: https://github.com/murufeng/EPSANet

创新点
EPSANet提出了一种新颖的金字塔挤压注意力(PSA)模块,旨在解决传统注意力机制在捕获多尺度特征时的局限性。其主要创新点包括:
- 高效性: PSA模块能够在较低的计算成本下有效提取多尺度空间信息。
- 灵活性: 该模块可以作为即插即用的组件,轻松集成到现有的卷积神经网络(CNN)架构中。
- 多尺度特征表示: EPSANet通过自适应地重新校准跨维通道的注意权重,增强了特征表示能力。
方法
EPSANet的核心是PSA模块,其实现过程如下:
- 多尺度特征提取: 通过Squeeze and Concat (SPC)模块获得通道维度上的多尺度特征图。
- 注意力计算: 使用SEWeight模块提取不同尺度特征图的注意力,生成通道方向的注意力向量。
- 再校准: 通过Softmax对通道维度的注意向量进行再校准,得到多尺度信道的再校准权重。
- 特征融合: 在重新校准的权重和对应的特征图上进行按元素乘积,输出丰富的多尺度特征图。

效果
EPSANet在多个计算机视觉任务中表现出色,包括图像分类、目标检测和实例分割。与传统的通道注意力方法相比,EPSANet在性能上有显著提升。例如:
- 在ImageNet数据集上,EPSANet的Top-1准确率比SENet-50提高了1.93%。
- 在MS-COCO数据集上,使用Mask-RCNN时,EPSANet在目标检测和实例分割任务中分别提高了2.7和1.7的AP值。
实验结果
实验结果表明,EPSANet在多个标准数据集上均超越了当前最新的技术。具体表现为:
- 在COCO 2017数据集上,EPSANet的目标检测率超越了ECANet,AP75指标提高了1.4%。
- 论文中进行了大量的定性和定量实验,验证了EPSANet在图像分类、目标检测和实例分割方面的先进性能。
总结
EPSANet通过引入金字塔挤压注意力模块,成功地提升了卷积神经网络在多尺度特征提取方面的能力。其灵活的设计使得EPSANet能够广泛应用于各种计算机视觉任务,展现出良好的泛化性能和高效性。该研究为未来的深度学习模型设计提供了新的思路和方法。
代码
import torch
import torch.nn as nnclass SEWeightModule(nn.Module):def __init__(self, channels, reduction=16):super(SEWeightModule, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.fc1 = nn.Conv2d(channels, channels//reduction, kernel_size=1, padding=0)self.relu = nn.ReLU(inplace=True)self.fc2 = nn.Conv2d(channels//reduction, channels, kernel_size=1, padding=0)self.sigmoid = nn.Sigmoid()def forward(self, x):out = self.avg_pool(x)out = self.fc1(out)out = self.relu(out)out = self.fc2(out)weight = self.sigmoid(out)return weightdef conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1, groups=1):"""standard convolution with padding"""return nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,padding=padding, dilation=dilation, groups=groups, bias=False)def conv1x1(in_planes, out_planes, stride=1):"""1x1 convolution"""return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)class PSAModule(nn.Module):def __init__(self, inplans, planes, conv_kernels=[3, 5, 7, 9], stride=1, conv_groups=[1, 4, 8, 16]):super(PSAModule, self).__init__()self.conv_1 = conv(inplans, planes//4, kernel_size=conv_kernels[0], padding=conv_kernels[0]//2,stride=stride, groups=conv_groups[0])self.conv_2 = conv(inplans, planes//4, kernel_size=conv_kernels[1], padding=conv_kernels[1]//2,stride=stride, groups=conv_groups[1])self.conv_3 = conv(inplans, planes//4, kernel_size=conv_kernels[2], padding=conv_kernels[2]//2,stride=stride, groups=conv_groups[2])self.conv_4 = conv(inplans, planes//4, kernel_size=conv_kernels[3], padding=conv_kernels[3]//2,stride=stride, groups=conv_groups[3])self.se = SEWeightModule(planes // 4)self.split_channel = planes // 4self.softmax = nn.Softmax(dim=1)def forward(self, x):batch_size = x.shape[0]x1 = self.conv_1(x)x2 = self.conv_2(x)x3 = self.conv_3(x)x4 = self.conv_4(x)feats = torch.cat((x1, x2, x3, x4), dim=1)feats = feats.view(batch_size, 4, self.split_channel, feats.shape[2], feats.shape[3])x1_se = self.se(x1)x2_se = self.se(x2)x3_se = self.se(x3)x4_se = self.se(x4)x_se = torch.cat((x1_se, x2_se, x3_se, x4_se), dim=1)attention_vectors = x_se.view(batch_size, 4, self.split_channel, 1, 1)attention_vectors = self.softmax(attention_vectors)feats_weight = feats * attention_vectorsfor i in range(4):x_se_weight_fp = feats_weight[:, i, :, :]if i == 0:out = x_se_weight_fpelse:out = torch.cat((x_se_weight_fp, out), 1)return outif __name__ == "__main__":dim=512# 如果GPU可用,将模块移动到 GPUdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 输入张量 (batch_size, channels,height, width)x = torch.randn(1,dim,14,14).to(device)# 初始化 PSAModule 模块block = PSAModule(dim,dim) # kernel_size为height或者widthprint(block)block = block.to(device)# 前向传播output = block(x)print("输入:", x.shape)print("输出:", output.shape)
输出结果:

相关文章:
【Block总结】PSA,金字塔挤压注意力,解决传统注意力机制在捕获多尺度特征时的局限性
论文信息 标题: EPSANet: An Efficient Pyramid Squeeze Attention Block on Convolutional Neural Network论文链接: arXivGitHub链接: https://github.com/murufeng/EPSANet 创新点 EPSANet提出了一种新颖的金字塔挤压注意力(PSA)模块,旨…...
代码随想录算法训练营第三十一天| 回溯算法04
491. 递增子序列 题目: 代码随想录 视频讲解:回溯算法精讲,树层去重与树枝去重 | LeetCode:491.递增子序列_哔哩哔哩_bilibili 这题需要注意的点: 1. path长度在2以上才放入最终结果 2. 需要记录已经使用过的数字&am…...
pycharm集成通义灵码应用
在pycharm中安装通义灵码 1、打开files-settings 2、选中plugins-搜索”TONGYI Lingma“,点击安装 3.安装完成后在pycharm的右侧就有通义灵码的标签 4、登录账号 5、查看代码区域代码,每一个方法前面都多了通义灵码的标识,可以直接选择…...
赛博算命之 ”梅花易数“ 的 “JAVA“ 实现 ——从玄学到科学的探索
hello~朋友们!好久不见! 今天给大家带来赛博算命第三期——梅花易数的java实现 赛博算命系列文章: 周易六十四卦 掐指一算——小六壬 更多优质文章:个人主页 JAVA系列:JAVA 大佬们互三哦~互三必回!…...
【Leetcode刷题记录】54. 螺旋矩阵--模拟,以及循环条件处理的一些细节
54. 螺旋矩阵 给你一个 m 行 n 列的矩阵 matrix ,请按照 顺时针螺旋顺序 ,返回矩阵中的所有元素。 示例 1: 输入:matrix [[1,2,3],[4,5,6],[7,8,9]] 输出:[1,2,3,6,9,8,7,4,5] 解题思路 顺时针螺旋顺序也就是“从左向…...
c++计算机教程
目的 做出-*/%计算机 要求 做出可以计算-*/%的计算机 实现 完整代码 #include<bits/stdc.h> int main() {std::cout<<"加 减- 乘* 除/ 取余% \没有了|(因为可以算三位)"<<"\n"<<"提示:每打完一个符号或打完一个数,\…...
蓝桥杯Java之输入输出练习题
题目 1:多组AB(基础版) 题目描述: 输入多组数据,每组数据包含两个整数 A 和 B,计算它们的和。输入以 文件结尾(EOF) 结束。 输入格式: 每行包含两个整数 A 和 B&#x…...
【R语言】环境空间
一、环境空间的特点 环境空间是一种特殊类型的变量,它可以像其它变量一样被分配和操作,还可以以参数的形式传递给函数。 R语言中环境空间具有如下3个特点: 1、对象名称唯一性 此特点指的是在不同的环境空间中可以有同名的变量出现&#x…...
【系统架构设计师】分布式数据库透明性
目录 1. 说明2. 分片透明3. 复制透明4. 位置透明5. 逻辑透明(局部数据模型透明)6.例题6.1 例题1 1. 说明 1.在分布式数据库系统中,分片透明、复制透明、位置透明和逻辑透明是几个重要的基本概念。2.分片透明、复制透明、位置透明和逻辑透明是…...
openpnp2.2 - 环境搭建 - 编译 + 调试 + 打包
文章目录 openpnp2.2 - 环境搭建 - 编译 调试 打包概述笔记前置任务克隆代码库切到最新的tag清理干净编译工程关掉旧工程打开已经克隆好的openpnp2.2工程将IDEA的SDK配置为openjdk23 切换中英文UI设置JAVA编译器 构建工程跑测试用例单步调试下断点导出工程的JAR包安装install…...
OpenCV:图像修复
目录 简述 1. 原理说明 1.1 Navier-Stokes方法(INPAINT_NS) 1.2 快速行进方法(INPAINT_TELEA) 2. 实现步骤 2.1 输入图像和掩膜(Mask) 2.2 调用cv2.inpaint()函数 2.3 完整代码示例 2.4 运行结果 …...
QT全局所有QSS样式实时切换
方法如下: void loadQss(int qssType) {QString name;if (qssType 1)name ":/qss/day.qss";elsename ":/qss/night.qss";QFile file(name);file.open(QFile::ReadOnly);QString qss;qss file.readAll();qApp->setStyleSheet(qss);file.…...
MySQL三大版本的演进
三大版本的演进 文章目录 三大版本的演进一:5.6版本(大跃进时期)1:支持只读事务2:innodb存储引擎增强2.1:缓冲池刷盘策略优化2.2:BufferPool缓冲池预热 3:新增Performance_Schema库监…...
利用 IMU 估计人体关节轴向和位置 —— 论文推导
Title: 利用 IMU 估计人体关节轴向和位置 —— “Joint axis and position estimation from inertial measurement data by exploiting kinematic constraints” —— 论文推导 文章目录 I. 论文回顾II. 铰接关节的约束1. 铰接关节约束的原理2. 铰接关节约束的梯度3. 铰接关节约…...
脚本一键生成管理下游k8s集群的kubeconfig
一、场景 1.1 需要管理下游k8s集群的场景。 1.2 不希望使用默认的cluster-admin权限的config. 二、脚本 **重点参数: 2.1 配置变量。 1、有单独namespace的权限和集群只读权限。 2、自签名的CA证书位置要正确。 2.2 如果配置错误,需要重新…...
数据库系统概念第六版记录 三
外码约束(Foreign Key Constraint) 外码(Foreign Key, FK)是关系数据库中的一个约束,它用于保证表之间的引用完整性。外码的值必须: 要么存在于被引用表的主键列中,要么为空(NULL&…...
YOLOv11-ultralytics-8.3.67部分代码阅读笔记-files.py
files.py ultralytics\utils\files.py 目录 files.py 1.所需的库和模块 2.class WorkingDirectory(contextlib.ContextDecorator): 3.def spaces_in_path(path): 4.def increment_path(path, exist_okFalse, sep"", mkdirFalse): 5.def file_age(path__fi…...
微信小程序案例1——制作猫眼电影底部标签导航栏
文章目录 一、项目步骤1 新建一个无AppID的movie项目2将准备好的底部标签导航图标拷贝到movie项目下面(将图标文件夹image放到项目文件夹里)3 打开App.json配置文件,在pages数组里添加4个页面路径:电影“pages/movie/movie”、影院“pages/cinema/cinema…...
【大数据技术】搭建完全分布式高可用大数据集群(Kafka)
搭建完全分布式高可用大数据集群(Kafka) kafka_2.13-3.9.0.tgz注:请在阅读本篇文章前,将以上资源下载下来。 写在前面 本文主要介绍搭建完全分布式高可用集群 Kafka 的详细步骤。 注意: 统一约定将软件安装包存放于虚拟机的/software目录下,软件安装至/opt目录下。 安…...
【服务器知识】如何在linux系统上搭建一个nfs
文章目录 NFS网络系统搭建**1. 准备工作****2. 服务器端配置****(1) 安装 NFS 服务****(2) 创建共享目录****(3) 配置共享规则****(4) 生效配置并启动服务****(5) 防火墙配置** **3. 客户端配置****(1) 安装 NFS 客户端工具****(2) 创建本地挂载点****(3) 挂载 NFS 共享目录***…...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
K8S认证|CKS题库+答案| 11. AppArmor
目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...
GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...
