当前位置: 首页 > news >正文

libtorch的c++,加载*.pth

一、转换模型为TorchScript

前提:python只保存了参数,没存结构

要在C++中使用libtorch(PyTorch的C++接口),读取和加载通过torch.save保存的模型(    torch.save(pdn.state_dict()这种方式,只保存了参数,没存结构),需要转换模型为TorchScript。在python下实现。

def get_pdn_small(out_channels=384, padding=False):pad_mult = 1 if padding else 0return nn.Sequential(nn.Conv2d(in_channels=3, out_channels=128, kernel_size=4,padding=3 * pad_mult),nn.ReLU(inplace=True),nn.AvgPool2d(kernel_size=2, stride=2, padding=1 * pad_mult),nn.Conv2d(in_channels=128, out_channels=256, kernel_size=4,padding=3 * pad_mult),nn.ReLU(inplace=True),nn.AvgPool2d(kernel_size=2, stride=2, padding=1 * pad_mult),nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3,padding=1 * pad_mult),nn.ReLU(inplace=True),nn.Conv2d(in_channels=256, out_channels=out_channels, kernel_size=4))def get_pdn_medium(out_channels=384, padding=False):pad_mult = 1 if padding else 0return nn.Sequential(nn.Conv2d(in_channels=3, out_channels=256, kernel_size=4,padding=3 * pad_mult),nn.ReLU(inplace=True),nn.AvgPool2d(kernel_size=2, stride=2, padding=1 * pad_mult),nn.Conv2d(in_channels=256, out_channels=512, kernel_size=4,padding=3 * pad_mult),nn.ReLU(inplace=True),nn.AvgPool2d(kernel_size=2, stride=2, padding=1 * pad_mult),nn.Conv2d(in_channels=512, out_channels=512, kernel_size=1),nn.ReLU(inplace=True),nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3,padding=1 * pad_mult),nn.ReLU(inplace=True),nn.Conv2d(in_channels=512, out_channels=out_channels, kernel_size=4),nn.ReLU(inplace=True),nn.Conv2d(in_channels=out_channels, out_channels=out_channels,kernel_size=1))
import torch# 假设你有一个已训练的模型
model = get_pdn_small()# 加载模型的state_dict
model.load_state_dict(torch.load('teacher_small.pth'))
model.eval()  # 设置模型为评估模式# 将模型转化为TorchScript
scripted_model = torch.jit.script(model)
scripted_model.save('teacher_small.pt')

二、在C++中加载TorchScript模型

在C++中,你可以使用torch::jit::load来加载.pt文件,如下所示:

#include <torch/script.h>  // One-stop header for loading TorchScript models
#include <iostream>
#include <memory>int main() {// 加载TorchScript模型try {// 加载模型std::shared_ptr<torch::jit::Module> model = std::make_shared<torch::jit::Module>(torch::jit::load("teacher_small.pt"));std::cout << "Model loaded successfully!" << std::endl;// 你可以在这里使用模型进行推理,比如输入一个张量// 例如,如果输入是一个3x224x224的图像,你需要创建一个相应的Tensortorch::Tensor input = torch::randn({1, 3, 224, 224});  // 示例输入std::vector<torch::jit::IValue> inputs;inputs.push_back(input);// 执行模型推理at::Tensor output = model->forward(inputs).toTensor();std::cout << "Output tensor: " << output << std::endl;}catch (const c10::Error& e) {std::cerr << "Error loading the model: " << e.what() << std::endl;return -1;}
}

相关文章:

libtorch的c++,加载*.pth

一、转换模型为TorchScript 前提&#xff1a;python只保存了参数&#xff0c;没存结构 要在C中使用libtorch&#xff08;PyTorch的C接口&#xff09;&#xff0c;读取和加载通过torch.save保存的模型&#xff08; torch.save(pdn.state_dict()这种方式&#xff0c;只保存了…...

去除 RequestTemplate 对象中的指定请求头

目录 目标实现获取 RequestTemplate 对象去除请求头 目标 去除 RequestTemplate 对象中的指定请求头&#xff0c;如 Authorization 等。 实现 获取 RequestTemplate 对象 获取 RequestTemplate 对象的方式有很多种&#xff0c;如 通过 feign 虚拟客户端配置器&#xff1a; …...

b s架构 网络安全 网络安全架构分析

目录 文章目录 目录网络安全逻辑架构 微分段&#xff08;Micro-segmentation&#xff09;防火墙即服务&#xff08;Firewall asa Service &#xff0c;FWaaS&#xff09;安全网络网关&#xff08;Secure web gateway&#xff09;净化域名系统&#xff08;Sanitized Domain Na…...

【DeepSeek论文精读】2. DeepSeek LLM:以长期主义扩展开源语言模型

欢迎关注[【AIGC论文精读】](https://blog.csdn.net/youcans/category_12321605.html&#xff09;原创作品 【DeepSeek论文精读】1. 从 DeepSeek LLM 到 DeepSeek R1 【DeepSeek论文精读】2. DeepSeek LLM&#xff1a;以长期主义扩展开源语言模型 【DeepSeek论文精读】3. DeepS…...

Spring Boot和SpringMVC的关系

Spring Boot和SpringMVC都是Spring框架的一部分&#xff0c;但它们的作用和使用方式有所不同。为了更好地理解它们的关系&#xff0c;我们可以从以下几个方面进行详细说明&#xff1a; 1. SpringBoot的作用 SpringBoot是一个开源框架&#xff0c;它的目的是简化Spring应用程序…...

java基础4(黑马)

一、方法 1.定义 方法&#xff1a;是一种语法结构&#xff0c;它可以把一段代码封装成一个功能&#xff0c;以便重复使用。 方法的完整格式&#xff1a; package cn.chang.define;public class MethodDemo1 {public static void main(String[] args) {// 目标&#xff1a;掌…...

nodejs - vue 视频切片上传,本地正常,线上环境导致磁盘爆满bug

nodejs 视频切片上传&#xff0c;本地正常&#xff0c;线上环境导致磁盘爆满bug 原因&#xff1a; 然后在每隔一分钟执行du -sh ls &#xff0c;发现文件变得越来越大&#xff0c;即文件下的mp4文件越来越大 最后导致磁盘直接爆满 排查原因 1、尝试将m3u8文件夹下的所有视…...

注意力机制(Attention Mechanism)和Transformer模型的区别与联系

注意力机制(Attention Mechanism) 和 Transformer 模型 是深度学习领域中的两个重要概念,虽然它们紧密相关,但有着明显的区别。下面我们将从 定义、作用、结构 和 应用 等多个维度来分析这两者的区别与联系。 1. 定义 注意力机制(Attention Mechanism): 注意力机制是一…...

C++,设计模式,【单例模式】

文章目录 一、模式定义与核心价值二、模式结构解析三、关键实现技术演进1. 基础版(非线程安全)2. 线程安全版(双重检查锁)3. 现代C++实现(C++11起)四、实战案例:全局日志管理器五、模式优缺点深度分析✅ 核心优势⚠️ 潜在缺陷六、典型应用场景七、高级实现技巧1. 模板化…...

C++:类和对象初识

C&#xff1a;类和对象初识 前言类的引入与定义引入定义类的两种定义方法1. 声明和定义全部放在类体中2. 声明和定义分离式 类的成员变量命名规则 类的访问限定符及封装访问限定符封装 类的作用域与实例化类的作用域类实例化实例化方式&#xff1a; 类对象模型类对象的大小存储…...

官网下载Redis指南

1.访问官网 https://redis.io/downloads/#stack 2.点击redis图标 拉到下面点击download 在新页面拉到最下面&#xff0c;点击install from source 找到需要的大版本后&#xff0c;点击releases page 最后点击下载需要的版本号即可...

活动预告 |【Part1】 Azure 在线技术公开课:迁移和保护 Windows Server 和 SQL Server 工作负载

课程介绍 通过 Microsoft Learn 免费参加 Microsoft Azure 在线技术公开课&#xff0c;掌握创造新机遇所需的技能&#xff0c;加快对 Microsoft 云技术的了解。参加我们举办的“迁移和保护 Windows Server 和 SQL Server 工作负载”活动&#xff0c;了解 Azure 如何为将工作负…...

【Linux系统编程】五、进程创建 -- fork()

文章目录 前言Ⅰ. 重温fork函数一、fork()的概念二、如何理解fork()有两个返回值 Ⅱ.fork的常规用法Ⅲ. fork调用失败的原因Ⅳ. 写时拷贝为什么存在写时拷贝❓❓❓ 前言 现阶段我们知道进程创建有如下两种方式&#xff0c;其实包括在以后的学习中这两种方式也是最常见的&#…...

深入解析 STM32 GPIO:结构、配置与应用实践

理解 GPIO 的工作原理和配置方法是掌握 STM32 开发的基础,后续的外设(如定时器、ADC、通信接口)都依赖于 GPIO 的正确配置。 目录 一、GPIO 的基本概念 二、GPIO 的主要功能 三、GPIO 的内部结构 四、GPIO 的工作模式 1. 输入模式 2. 输出模式 3. 复用功能模式 4. 模…...

深入探究 C++17 std::is_invocable

文章目录 一、引言二、std::is_invocable 概述代码示例输出结果 三、std::is_invocable 的工作原理简化实现示例 四、std::is_invocable 的相关变体1. std::is_invocable_r2. std::is_nothrow_invocable 和 std::is_nothrow_invocable_r 五、使用场景1. 模板元编程2. 泛型算法 …...

Vmware网络模式

一、Vmware虚拟网络 Vmware共支持创建20个虚拟网络&#xff0c;相当于现实生活的交换机&#xff0c;名称vmnet0-vmnet19 没创建一个虚拟网络。对应在物理机会自动生成相应的虚拟网卡 该虚拟网卡用于和对应的虚拟网络中的虚拟机通信 二、虚拟网络的工作模式 1、nat模式 …...

神经辐射场(NeRF):从2D图像到3D场景的革命性重建

神经辐射场&#xff08;NeRF&#xff09;&#xff1a;从2D图像到3D场景的革命性重建 引言 在计算机视觉和图形学领域&#xff0c;如何从有限的2D图像中高效且准确地重建真实的3D场景&#xff0c;一直是一个重要的研究方向。传统的3D重建方法&#xff0c;如多视角几何、点云重建…...

深入解析AI技术原理

序言 在当今数字化时代,人工智能(AI)已经成为科技领域最炙手可热的话题之一。从智能家居到自动驾驶汽车,从医疗诊断到金融风险预测,AI的应用无处不在。然而,对于许多人来说,AI背后的技术原理仍然充满了神秘色彩。本文将深入探讨AI的核心技术原理,从基础理论到前…...

PDF 2.0 的新特性

近来闲来无事&#xff0c;就想着把PDF的新标准研究研究&#xff0c;略有所得&#xff0c;和大家分享一下。 ‌PDF 2.0的主要新特性包括更高级的加密算法、改进的数字签名和权限管理机制、增强了对非罗马字符的支持&#xff0c;以及扩展了标签架构和3D建模语言“PRC”的支…...

Matlab机械手碰撞检测应用

本文包含三个部分&#xff1a; Matlab碰撞检测的实现URDF文件的制作机械手STL文件添加夹爪 一.Matlab碰撞检测的实现 首先上代码 %% 检测在结构环境中机器人是否与物体之间发生碰撞情况&#xff0c;如何避免&#xff1f; % https://www.mathworks.com/help/robotics/ug/che…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

uniapp 字符包含的相关方法

在uniapp中&#xff0c;如果你想检查一个字符串是否包含另一个子字符串&#xff0c;你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的&#xff0c;但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的&#xff1a;a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...

华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)

题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...

热门Chrome扩展程序存在明文传输风险,用户隐私安全受威胁

赛门铁克威胁猎手团队最新报告披露&#xff0c;数款拥有数百万活跃用户的Chrome扩展程序正在通过未加密的HTTP连接静默泄露用户敏感数据&#xff0c;严重威胁用户隐私安全。 知名扩展程序存在明文传输风险 尽管宣称提供安全浏览、数据分析或便捷界面等功能&#xff0c;但SEMR…...