libtorch的c++,加载*.pth
一、转换模型为TorchScript
前提:python只保存了参数,没存结构
要在C++中使用libtorch
(PyTorch的C++接口),读取和加载通过torch.save
保存的模型( torch.save(pdn.state_dict()这种方式,只保存了参数,没存结构),需要转换模型为TorchScript。在python下实现。
def get_pdn_small(out_channels=384, padding=False):pad_mult = 1 if padding else 0return nn.Sequential(nn.Conv2d(in_channels=3, out_channels=128, kernel_size=4,padding=3 * pad_mult),nn.ReLU(inplace=True),nn.AvgPool2d(kernel_size=2, stride=2, padding=1 * pad_mult),nn.Conv2d(in_channels=128, out_channels=256, kernel_size=4,padding=3 * pad_mult),nn.ReLU(inplace=True),nn.AvgPool2d(kernel_size=2, stride=2, padding=1 * pad_mult),nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3,padding=1 * pad_mult),nn.ReLU(inplace=True),nn.Conv2d(in_channels=256, out_channels=out_channels, kernel_size=4))def get_pdn_medium(out_channels=384, padding=False):pad_mult = 1 if padding else 0return nn.Sequential(nn.Conv2d(in_channels=3, out_channels=256, kernel_size=4,padding=3 * pad_mult),nn.ReLU(inplace=True),nn.AvgPool2d(kernel_size=2, stride=2, padding=1 * pad_mult),nn.Conv2d(in_channels=256, out_channels=512, kernel_size=4,padding=3 * pad_mult),nn.ReLU(inplace=True),nn.AvgPool2d(kernel_size=2, stride=2, padding=1 * pad_mult),nn.Conv2d(in_channels=512, out_channels=512, kernel_size=1),nn.ReLU(inplace=True),nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3,padding=1 * pad_mult),nn.ReLU(inplace=True),nn.Conv2d(in_channels=512, out_channels=out_channels, kernel_size=4),nn.ReLU(inplace=True),nn.Conv2d(in_channels=out_channels, out_channels=out_channels,kernel_size=1))
import torch# 假设你有一个已训练的模型
model = get_pdn_small()# 加载模型的state_dict
model.load_state_dict(torch.load('teacher_small.pth'))
model.eval() # 设置模型为评估模式# 将模型转化为TorchScript
scripted_model = torch.jit.script(model)
scripted_model.save('teacher_small.pt')
二、在C++中加载TorchScript模型:
在C++中,你可以使用torch::jit::load
来加载.pt
文件,如下所示:
#include <torch/script.h> // One-stop header for loading TorchScript models
#include <iostream>
#include <memory>int main() {// 加载TorchScript模型try {// 加载模型std::shared_ptr<torch::jit::Module> model = std::make_shared<torch::jit::Module>(torch::jit::load("teacher_small.pt"));std::cout << "Model loaded successfully!" << std::endl;// 你可以在这里使用模型进行推理,比如输入一个张量// 例如,如果输入是一个3x224x224的图像,你需要创建一个相应的Tensortorch::Tensor input = torch::randn({1, 3, 224, 224}); // 示例输入std::vector<torch::jit::IValue> inputs;inputs.push_back(input);// 执行模型推理at::Tensor output = model->forward(inputs).toTensor();std::cout << "Output tensor: " << output << std::endl;}catch (const c10::Error& e) {std::cerr << "Error loading the model: " << e.what() << std::endl;return -1;}
}
相关文章:
libtorch的c++,加载*.pth
一、转换模型为TorchScript 前提:python只保存了参数,没存结构 要在C中使用libtorch(PyTorch的C接口),读取和加载通过torch.save保存的模型( torch.save(pdn.state_dict()这种方式,只保存了…...

去除 RequestTemplate 对象中的指定请求头
目录 目标实现获取 RequestTemplate 对象去除请求头 目标 去除 RequestTemplate 对象中的指定请求头,如 Authorization 等。 实现 获取 RequestTemplate 对象 获取 RequestTemplate 对象的方式有很多种,如 通过 feign 虚拟客户端配置器: …...

b s架构 网络安全 网络安全架构分析
目录 文章目录 目录网络安全逻辑架构 微分段(Micro-segmentation)防火墙即服务(Firewall asa Service ,FWaaS)安全网络网关(Secure web gateway)净化域名系统(Sanitized Domain Na…...

【DeepSeek论文精读】2. DeepSeek LLM:以长期主义扩展开源语言模型
欢迎关注[【AIGC论文精读】](https://blog.csdn.net/youcans/category_12321605.html)原创作品 【DeepSeek论文精读】1. 从 DeepSeek LLM 到 DeepSeek R1 【DeepSeek论文精读】2. DeepSeek LLM:以长期主义扩展开源语言模型 【DeepSeek论文精读】3. DeepS…...
Spring Boot和SpringMVC的关系
Spring Boot和SpringMVC都是Spring框架的一部分,但它们的作用和使用方式有所不同。为了更好地理解它们的关系,我们可以从以下几个方面进行详细说明: 1. SpringBoot的作用 SpringBoot是一个开源框架,它的目的是简化Spring应用程序…...

java基础4(黑马)
一、方法 1.定义 方法:是一种语法结构,它可以把一段代码封装成一个功能,以便重复使用。 方法的完整格式: package cn.chang.define;public class MethodDemo1 {public static void main(String[] args) {// 目标:掌…...

nodejs - vue 视频切片上传,本地正常,线上环境导致磁盘爆满bug
nodejs 视频切片上传,本地正常,线上环境导致磁盘爆满bug 原因: 然后在每隔一分钟执行du -sh ls ,发现文件变得越来越大,即文件下的mp4文件越来越大 最后导致磁盘直接爆满 排查原因 1、尝试将m3u8文件夹下的所有视…...
注意力机制(Attention Mechanism)和Transformer模型的区别与联系
注意力机制(Attention Mechanism) 和 Transformer 模型 是深度学习领域中的两个重要概念,虽然它们紧密相关,但有着明显的区别。下面我们将从 定义、作用、结构 和 应用 等多个维度来分析这两者的区别与联系。 1. 定义 注意力机制(Attention Mechanism): 注意力机制是一…...

C++,设计模式,【单例模式】
文章目录 一、模式定义与核心价值二、模式结构解析三、关键实现技术演进1. 基础版(非线程安全)2. 线程安全版(双重检查锁)3. 现代C++实现(C++11起)四、实战案例:全局日志管理器五、模式优缺点深度分析✅ 核心优势⚠️ 潜在缺陷六、典型应用场景七、高级实现技巧1. 模板化…...

C++:类和对象初识
C:类和对象初识 前言类的引入与定义引入定义类的两种定义方法1. 声明和定义全部放在类体中2. 声明和定义分离式 类的成员变量命名规则 类的访问限定符及封装访问限定符封装 类的作用域与实例化类的作用域类实例化实例化方式: 类对象模型类对象的大小存储…...

官网下载Redis指南
1.访问官网 https://redis.io/downloads/#stack 2.点击redis图标 拉到下面点击download 在新页面拉到最下面,点击install from source 找到需要的大版本后,点击releases page 最后点击下载需要的版本号即可...

活动预告 |【Part1】 Azure 在线技术公开课:迁移和保护 Windows Server 和 SQL Server 工作负载
课程介绍 通过 Microsoft Learn 免费参加 Microsoft Azure 在线技术公开课,掌握创造新机遇所需的技能,加快对 Microsoft 云技术的了解。参加我们举办的“迁移和保护 Windows Server 和 SQL Server 工作负载”活动,了解 Azure 如何为将工作负…...

【Linux系统编程】五、进程创建 -- fork()
文章目录 前言Ⅰ. 重温fork函数一、fork()的概念二、如何理解fork()有两个返回值 Ⅱ.fork的常规用法Ⅲ. fork调用失败的原因Ⅳ. 写时拷贝为什么存在写时拷贝❓❓❓ 前言 现阶段我们知道进程创建有如下两种方式,其实包括在以后的学习中这两种方式也是最常见的&#…...
深入解析 STM32 GPIO:结构、配置与应用实践
理解 GPIO 的工作原理和配置方法是掌握 STM32 开发的基础,后续的外设(如定时器、ADC、通信接口)都依赖于 GPIO 的正确配置。 目录 一、GPIO 的基本概念 二、GPIO 的主要功能 三、GPIO 的内部结构 四、GPIO 的工作模式 1. 输入模式 2. 输出模式 3. 复用功能模式 4. 模…...

深入探究 C++17 std::is_invocable
文章目录 一、引言二、std::is_invocable 概述代码示例输出结果 三、std::is_invocable 的工作原理简化实现示例 四、std::is_invocable 的相关变体1. std::is_invocable_r2. std::is_nothrow_invocable 和 std::is_nothrow_invocable_r 五、使用场景1. 模板元编程2. 泛型算法 …...
Vmware网络模式
一、Vmware虚拟网络 Vmware共支持创建20个虚拟网络,相当于现实生活的交换机,名称vmnet0-vmnet19 没创建一个虚拟网络。对应在物理机会自动生成相应的虚拟网卡 该虚拟网卡用于和对应的虚拟网络中的虚拟机通信 二、虚拟网络的工作模式 1、nat模式 …...

神经辐射场(NeRF):从2D图像到3D场景的革命性重建
神经辐射场(NeRF):从2D图像到3D场景的革命性重建 引言 在计算机视觉和图形学领域,如何从有限的2D图像中高效且准确地重建真实的3D场景,一直是一个重要的研究方向。传统的3D重建方法,如多视角几何、点云重建…...

深入解析AI技术原理
序言 在当今数字化时代,人工智能(AI)已经成为科技领域最炙手可热的话题之一。从智能家居到自动驾驶汽车,从医疗诊断到金融风险预测,AI的应用无处不在。然而,对于许多人来说,AI背后的技术原理仍然充满了神秘色彩。本文将深入探讨AI的核心技术原理,从基础理论到前…...
PDF 2.0 的新特性
近来闲来无事,就想着把PDF的新标准研究研究,略有所得,和大家分享一下。 PDF 2.0的主要新特性包括更高级的加密算法、改进的数字签名和权限管理机制、增强了对非罗马字符的支持,以及扩展了标签架构和3D建模语言“PRC”的支…...

Matlab机械手碰撞检测应用
本文包含三个部分: Matlab碰撞检测的实现URDF文件的制作机械手STL文件添加夹爪 一.Matlab碰撞检测的实现 首先上代码 %% 检测在结构环境中机器人是否与物体之间发生碰撞情况,如何避免? % https://www.mathworks.com/help/robotics/ug/che…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...

(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...