当前位置: 首页 > news >正文

BFS算法篇——广度优先搜索,探索未知的旅程(上)

文章目录

  • 前言
  • 一、BFS的思路
  • 二、BFS的C语言实现
    • 1. 图的表示
    • 2. BFS的实现
  • 三、代码解析
  • 四、输出结果
  • 五、总结

在这里插入图片描述

前言

广度优先搜索(BFS)是一种广泛应用于图论中的算法,常用于寻找最短路径、图的遍历等问题。与深度优先搜索(DFS)不同,BFS通过层级地探索节点来确保最先访问的节点距离源点较近,因此它可以用来求解最短路径问题。让我们深入了解这个算法,并通过具体的例子和代码来进一步掌握它的实现。

一、BFS的思路

BFS的主要思想是从起始节点开始,首先访问该节点的所有邻接节点,然后再访问这些邻接节点的邻接节点。BFS利用队列的先进先出(FIFO)特性保证了节点是按层次顺序被访问的。

二、BFS的C语言实现

1. 图的表示

在C语言中,我们常用邻接表来表示图。对于无向图,我们可以使用一个邻接矩阵或者邻接链表。在这里,我们采用邻接链表表示图。

2. BFS的实现

以下是C语言实现BFS算法的具体代码,图使用邻接表表示:

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>#define MAX_NODES 6  // 节点数量// 图的邻接表结构
typedef struct Node {int data;struct Node* next;
} Node;typedef struct Graph {Node* adjList[MAX_NODES];
} Graph;// 队列结构
typedef struct Queue {int items[MAX_NODES];int front, rear;
} Queue;// 创建一个新的图
Graph* createGraph() {Graph* graph = (Graph*)malloc(sizeof(Graph));for (int i = 0; i < MAX_NODES; i++) {graph->adjList[i] = NULL;}return graph;
}// 向图中添加一条边
void addEdge(Graph* graph, int src, int dest) {Node* newNode = (Node*)malloc(sizeof(Node));newNode->data = dest;newNode->next = graph->adjList[src];graph->adjList[src] = newNode;// 因为是无向图,所以添加反向边newNode = (Node*)malloc(sizeof(Node));newNode->data = src;newNode->next = graph->adjList[dest];graph->adjList[dest] = newNode;
}// 初始化队列
void initQueue(Queue* q) {q->front = -1;q->rear = -1;
}// 入队
void enqueue(Queue* q, int value) {if (q->rear == MAX_NODES - 1) {printf("队列已满\n");return;}if (q->front == -1) {q->front = 0;}q->rear++;q->items[q->rear] = value;
}// 出队
int dequeue(Queue* q) {if (q->front == -1) {printf("队列为空\n");return -1;}int item = q->items[q->front];q->front++;if (q->front > q->rear) {q->front = q->rear = -1;}return item;
}// 判断队列是否为空
bool isQueueEmpty(Queue* q) {return q->front == -1;
}// 广度优先搜索BFS
void bfs(Graph* graph, int start) {bool visited[MAX_NODES] = {false};  // 访问标志数组Queue q;initQueue(&q);// 标记起始节点为已访问,并入队visited[start] = true;enqueue(&q, start);while (!isQueueEmpty(&q)) {// 出队并访问节点int node = dequeue(&q);printf("%c ", node + 'A');  // 输出节点(假设节点是字母A, B, C...)// 遍历当前节点的所有邻接节点Node* temp = graph->adjList[node];while (temp) {int adjNode = temp->data;if (!visited[adjNode]) {visited[adjNode] = true;enqueue(&q, adjNode);}temp = temp->next;}}
}int main() {// 创建图并添加边Graph* graph = createGraph();addEdge(graph, 0, 1);  // A - BaddEdge(graph, 0, 2);  // A - CaddEdge(graph, 1, 3);  // B - DaddEdge(graph, 1, 4);  // B - EaddEdge(graph, 2, 4);  // C - EaddEdge(graph, 3, 5);  // D - FaddEdge(graph, 4, 5);  // E - F// 执行BFS从节点A(索引0)开始printf("BFS遍历结果: ");bfs(graph, 0);// 释放内存free(graph);return 0;
}

三、代码解析

图的表示:

  • 图使用邻接表表示。每个节点用一个链表来存储与其直接相连的节点。Graph结构体中有一个数组 adjList 来保存所有节点的邻接链表。

队列的实现:

  • 队列用数组来实现,包含 front 和 rear 来管理队列的操作。队列用于按顺序访问图的每个节点。

BFS的实现:

  • 使用队列来管理待访问的节点。首先将起始节点标记为已访问并入队。然后逐步出队并访问节点,访问节点的邻接节点,如果邻接节点未被访问,则将其标记为已访问并入队。
  • 输出遍历的节点(假设节点为字母,如 A, B, C, …)。

四、输出结果

假设图的结构如下所示:

    A -- B -- D|    |    |C -- E -- F

输出结果将为:

BFS遍历结果: A B C D E F 

这意味着从节点 A 开始,BFS按层次遍历的顺序访问了图中的所有节点。

五、总结

  • BFS是一种通过逐层扩展来遍历图的算法,通常用于求解最短路径问题、图的遍历等。
  • 在C语言中,BFS通常使用队列来实现,队列的先进先出特性确保了图的层次遍历。
  • 本例中通过邻接表表示图,使用队列来实现BFS遍历,从而找到节点间的最短路径。
  • 广度优先搜索在实际问题中具有广泛的应用,例如在社交网络分析、路径规划等方面,都可以发挥其强大的作用。

本篇关于BFS算法篇的介绍就暂告段落啦,希望能对大家的学习产生帮助,欢迎各位佬前来支持斧正!!!

在这里插入图片描述

相关文章:

BFS算法篇——广度优先搜索,探索未知的旅程(上)

文章目录 前言一、BFS的思路二、BFS的C语言实现1. 图的表示2. BFS的实现 三、代码解析四、输出结果五、总结 前言 广度优先搜索&#xff08;BFS&#xff09;是一种广泛应用于图论中的算法&#xff0c;常用于寻找最短路径、图的遍历等问题。与深度优先搜索&#xff08;DFS&…...

mongodb 使用内存过大分析

os 分析 内存使用 ps aux|head -1;ps aux|grep -v PID|sort -rn -k 4|head -10swap 使用 for i in $(ls /proc | grep "^[0-9]" | awk $0>100); do awk /Swap:/{aa$2}END{print "$i",a/1024"M"} /proc/$i/smaps;done| sort -k2nr | headmo…...

CNN-day5-经典神经网络LeNets5

经典神经网络-LeNets5 1998年Yann LeCun等提出的第一个用于手写数字识别问题并产生实际商业&#xff08;邮政行业&#xff09;价值的卷积神经网络 参考&#xff1a;论文笔记&#xff1a;Gradient-Based Learning Applied to Document Recognition-CSDN博客 1 网络模型结构 …...

登录到docker里

在Docker中登录到容器通常有两种情况&#xff1a; 登录到正在运行的容器内部&#xff1a;如果你想要进入到正在运行的容器内部&#xff0c;可以使用docker exec命令。 登录到容器中并启动一个shell&#xff1a;如果你想要启动一个容器&#xff0c;并在其中启动一个shell&…...

利用PHP爬虫开发获取淘宝分类详情:解锁电商数据新视角

在电商领域&#xff0c;淘宝作为中国最大的电商平台之一&#xff0c;其分类详情数据对于市场分析、竞争策略制定以及电商运营优化具有极高的价值。通过PHP爬虫技术&#xff0c;我们可以高效地获取这些数据&#xff0c;为电商从业者提供强大的数据支持。本文将详细介绍如何使用P…...

LeetCode 142题解|环形链表II的快慢指针法(含数学证明)

题目如下&#xff1a; 解题过程如下&#xff1a; 思路&#xff1a;快慢指针在环里一定会相遇&#xff0c;相遇结点到入环起始结点的距离 链表头结点到入环起始结点的距离&#xff08;距离看从左往右的方向&#xff0c;也就是单链表的方向&#xff09;&#xff0c;从链表头结点…...

[图文]课程讲解片段-Fowler分析模式的剖析和实现01

​ 解说&#xff1a; GJJ-004-1&#xff0c;分析模式高阶Fowler分析模式的剖析和实现&#xff0c;这个课是针对Martin Fowler的《分析模式》那本书里面的模式来讲解&#xff0c;对里面的模式来剖析&#xff0c;然后用代码来实现。 做到这一步的&#xff0c;我们这个是世界上独…...

Dify使用

1. 概述 官网:Dify.AI 生成式 AI 应用创新引擎 文档:欢迎使用 Dify | Dify GITHUB:langgenius/dify: Dify is an open-source LLM app development platform. Difys intuitive interface combines AI workflow, RAG pipeline, agent capabilities, model management, ob…...

解锁 DeepSeek 模型高效部署密码:蓝耘平台全解析

&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎来到 青云交的博客&#xff01;能与诸位在此相逢&#xff0c;我倍感荣幸。在这飞速更迭的时代&#xff0c;我们都渴望一方心灵净土&#xff0c;而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识&#xff0c;也…...

7.PPT:“中国梦”学习实践活动【20】

目录 NO1234​ NO5678​ NO9\10\11 NO1234 考生文件夹下创建一个名为“PPT.pptx”的新演示文稿Word素材文档的文字&#xff1a;复制/挪动→“PPT.pptx”的新演示文稿&#xff08;蓝色、黑色、红色&#xff09; 视图→幻灯片母版→重命名&#xff1a;“中国梦母版1”→背景样…...

Linux系统-centos防火墙firewalld详解

Linux系统-centos7.6 防火墙firewalld详解 1 firewalld了解 CentOS 7.6默认的防火墙管理工具是firewalld&#xff0c;它取代了之前的iptables防火墙。firewalld属于典型的包过滤防火墙或称之为网络层防火墙&#xff0c;与iptables一样&#xff0c;都是用来管理防火墙的工具&a…...

零基础都可以本地部署Deepseek R1

文章目录 一、硬件配置需求二、详细部署步骤1. 安装 Ollama 工具2. 部署 DeepSeek-R1 模型3. API使用4. 配置图形化交互界面&#xff08;可选&#xff09;5. 使用与注意事项 一、硬件配置需求 不同版本的 DeepSeek-R1 模型参数量不同&#xff0c;对硬件资源的要求也不尽相同。…...

通过Ollama本地部署DeepSeek R1以及简单使用的教程(超详细)

本文介绍了在Windows环境下&#xff0c;通过Ollama来本地部署DeepSeek R1。该问包含了Ollama的下载、安装、安装目录迁移、大模型存储位置修改、下载DeepSeek以及通过Web UI来对话等相关内容。 1、&#x1f947;下载Ollama 首先我们到Ollama官网去下载安装包&#xff0c;此处我…...

css实现长尾箭头(夹角小于45度的)

1. 长尾夹角小于45度的箭头 代码 //h5<div class"singleArrow"></div>//css .singleArrow {width: 150px;height: 1px;position: relative;background-color: #15ff00;/* transform: rotate(-40deg); */ /* 旋转角度 */}.singleArrow::after{ // 成品-有…...

封装descriptions组件,描述,灵活

效果 1、组件1&#xff0c;dade-descriptions.vue <template><table><tbody><slot></slot></tbody> </table> </template><script> </script><style scoped>table {width: 100%;border-collapse: coll…...

OC-Block

关于OC中的block作为属性时&#xff0c;为什么要要用copy修饰 property (nonatomic, copy) void (^completionBlock)(void);很多文章包括AI都会给出类似结论 Block 默认分配在栈上&#xff0c;如果没有 copy&#xff0c;当方法退出后&#xff0c;Block 会被销毁。使用 copy 修…...

关于知识蒸馏的概念原理以及常见方法

1. 概念与原理 知识蒸馏的基本定义 知识蒸馏(Knowledge Distillation) 是一种将模型压缩与迁移学习结合的技术:它利用预先训练好的大模型(通常参数量大、精度高、计算开销大)指导一个更轻量(参数量小、推理速度快)的学生模型进行训练,从而在保持模型精度的同时显著减少…...

C++轻量级桌面GUI库FLTK

C轻量级桌面GUI库FLTK Screenshots - Fast Light Toolkit (FLTK) 这里写个备忘录,可以参考一下....

C++20导出模块及使用

1.模块声明 .ixx文件为导入模块文件 math_operations.ixx export module math_operations;//模块导出 //导出命名空间 export namespace math_ {//导出命名空间中函数int add(int a, int b);int sub(int a, int b);int mul(int a, int b);int div(int a, int b); } .cppm文件…...

PID 算法简介(C语言)

一、简介: PID是比例、积分、微分三个环节的组合,用来进行反馈控制。每个部分都有对应的系数,也就是Kp、Ki、Kd。PID 算法实现这三个部分的计算,然后综合起来得到控制输出。 二、PID控制器结构体: PID控制器结构体:包含PID参数(Kp, Ki, Kd);存储积分项和上一次误差;…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求&#xff0c;本次涉及的主要是收费汇聚交换机的配置&#xff0c;浪潮网络设备在高速项目很少&#xff0c;通…...

【Linux】自动化构建-Make/Makefile

前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具&#xff1a;make/makfile 1.背景 在一个工程中源文件不计其数&#xff0c;其按类型、功能、模块分别放在若干个目录中&#xff0c;mak…...

SpringAI实战:ChatModel智能对话全解

一、引言&#xff1a;Spring AI 与 Chat Model 的核心价值 &#x1f680; 在 Java 生态中集成大模型能力&#xff0c;Spring AI 提供了高效的解决方案 &#x1f916;。其中 Chat Model 作为核心交互组件&#xff0c;通过标准化接口简化了与大语言模型&#xff08;LLM&#xff0…...

华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)

题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...