当前位置: 首页 > news >正文

LeetCodehot 力扣热题100 验证二叉搜索树

class Solution {vector<int> nums;  // 用来存储二叉树节点值的数组
public:bool isValidBST(TreeNode* root) {inorder(root);  // 中序遍历二叉树,填充 nums 数组// 遍历 nums 数组,检查是否为严格递增序列for(int i=0; i<nums.size()-1; i++){if(nums[i] >= nums[i+1]){  // 如果当前元素不小于下一个元素,说明不是严格递增的return false;  // 不是有效的二叉搜索树}}return true;  // 如果整个数组都是严格递增的,说明是有效的二叉搜索树}private:// 中序遍历:遍历树的左子树、根节点和右子树void inorder(TreeNode* root){if(root != nullptr){  // 如果当前节点不是空节点inorder(root->left);  // 递归遍历左子树nums.push_back(root->val);  // 将当前节点的值加入 nums 数组inorder(root->right);  // 递归遍历右子树}}
};

这段代码是一个验证二叉搜索树(BST)是否有效的算法。通过中序遍历二叉树,将节点的值存储在一个数组中,然后检查数组是否是严格递增的。二叉搜索树的性质是:左子树的值小于根节点的值,右子树的值大于根节点的值,而中序遍历会得到一个按升序排列的节点值序列。

思路:

1. 中序遍历:首先我们要遍历二叉树,使用中序遍历。对于一棵合法的二叉搜索树,使用中序遍历会得到一个严格递增的节点值序列

2. 将节点值存储到数组:通过递归进行中序遍历,将每个节点的值按顺序存储到一个数组 nums 中。

3. 验证递增性:中序遍历完成后,检查 nums 数组中的值是否是严格递增的。如果有任何两个相邻的元素不满足递增条件,返回 false,表示这不是一棵有效的二叉搜索树。

4. 返回结果:如果数组是严格递增的,说明这棵树符合二叉搜索树的要求,返回 true。

运行步骤:

假设我们有以下二叉树:

      2

     / \

    1   3

1. 初始状态

• nums 数组为空。

2. 执行 inorder(root):

• 调用 inorder(2),根节点是 2。

• 递归调用 inorder(1)(左子树)。

• 在 inorder(1) 中,递归调用 inorder(null)(空左子树),然后将 1 加入 nums 数组。

• 返回并继续遍历右子树(inorder(null)),没有元素。

• 现在,nums = [1]。

• 返回 inorder(2),将 2 加入 nums 数组。

• 继续遍历右子树,调用 inorder(3)。

• 在 inorder(3) 中,递归调用 inorder(null)(空左子树),将 3 加入 nums 数组。

• 继续遍历右子树(inorder(null)),没有元素。

• 现在,nums = [1, 2, 3]。

• inorder 遍历结束后,nums = [1, 2, 3]。

3. 执行递增性检查

• nums = [1, 2, 3]。

• 遍历数组:

• 比较 nums[0] 和 nums[1],即 1 和 2,1 < 2,继续检查。

• 比较 nums[1] 和 nums[2],即 2 和 3,2 < 3,继续检查。

• 所有检查都通过,返回 true。

边界情况:

空树:如果根节点是空的,inorder 函数不会执行任何操作,nums 数组会保持为空。此时,直接返回 true,因为空树是有效的二叉搜索树。

只有一个节点的树:即使树只有一个节点,nums 数组也只会包含一个元素,严格递增性自然成立,返回 true。

时间复杂度:

中序遍历:时间复杂度是 O(n),其中 n 是树中节点的数量,因为我们遍历了每个节点一次。

数组检查:时间复杂度是 O(n),需要检查 nums 数组中的所有元素。

总的时间复杂度:O(n)。

空间复杂度:

• 我们使用了一个 nums 数组来存储树的节点值,空间复杂度是 O(n),其中 n 是树中节点的数量。

相关文章:

LeetCodehot 力扣热题100 验证二叉搜索树

class Solution {vector<int> nums; // 用来存储二叉树节点值的数组 public:bool isValidBST(TreeNode* root) {inorder(root); // 中序遍历二叉树&#xff0c;填充 nums 数组// 遍历 nums 数组&#xff0c;检查是否为严格递增序列for(int i0; i<nums.size()-1; i){…...

四次挥手详解

文章目录 一、四次挥手各状态FIN_WAIT_1CLOSE_WAITFIN_WAIT_2LAST_ACKTIME_WAITCLOSE 二、双方同时调用close()&#xff0c;FIN_WAIT_1状态后进入CLOSING状态CLOSING状态 三、TIME_WAIT状态详解(1) TIME_WAIT状态下的2MSL是什么MSL &#xff08;报文最大生存时间&#xff09;为…...

Deepseek-v3 / Dify api接入飞书机器人go程序

准备工作 开通了接收消息权限的飞书机器人&#xff0c;例如我希望用户跟飞书机器人私聊&#xff0c;就需要开通这个权限&#xff1a;读取用户发给机器人的单聊消息 im:message.p2p_msg:readonly准备好飞书机器人的API key 和Secretdeepseek-v3的api keysecret&#xff1a;http…...

2025.2.9 每日学习记录2:技术报告写了一半+一点点读后感

0.近期主任务线 1.完成小论文准备 目标是3月份完成实验点1的全部实验和论文。 2.准备教资笔试 打算留个十多天左右&#xff0c;一次性备考笔试的三个科目 1.实习申请技术准备&#xff1a;微调、Agent、RAG 1.今日完成任务 1.电子斗蛐蛐&#xff08;文本书写领域&am…...

qml ToolBar详解

1、概述 在 QML 中&#xff0c;ToolBar 是一种常用的 UI 组件&#xff0c;通常位于窗口的顶部或底部&#xff0c;用于提供一系列的操作按钮、菜单或其他交互元素。它可以帮助用户快速访问应用程序的常用功能&#xff0c;提高用户操作的便捷性。ToolBar 可以包含多个 ToolButto…...

机器学习在癌症分子亚型分类中的应用

学习笔记&#xff1a;机器学习在癌症分子亚型分类中的应用——Cancer Cell 研究解析 1. 文章基本信息 标题&#xff1a;Classification of non-TCGA cancer samples to TCGA molecular subtypes using machine learning发表期刊&#xff1a;Cancer Cell发表时间&#xff1a;20…...

Ansible自动化部署K8s集群一 Ansible的基础使用实战

一、Ansible介绍 1.安装ansible: yum install ansible -y 2.ansible的架构图&#xff1a; 3.ansible四部分&#xff1a; inventory:ansible管理的主机信息&#xff0c;包括ip地址、ssh端口、账号和密码等 modules:任务均由模块完成 plugins:增加ansible的核心功能 pla…...

ZooKeeper Watcher 机制详解:从注册到回调的全过程

引言 在分布式系统中&#xff0c;数据的实时性和一致性是至关重要的。ZooKeeper 通过其 Watcher 机制提供了一种高效的方式来监听数据变化或事件&#xff0c;从而使客户端能够在数据发生变化时立即收到通知。本文将深入探讨 ZooKeeper 的 Watcher 机制&#xff0c;具体包括客户…...

flutter_tools/gradle Unsupported class file major version 65 问题解决

1.问题定位 使用 命令 flutter doctor --verbose 可以查看当前项目中&#xff0c;使用的java的版本。 [✓] Android Studio (version 2024.2)• Android Studio at /Applications/Android Studio.app/Contents• Flutter plugin can be installed from:&#x1f528; https…...

C++设计模式 - 模板模式

一&#xff1a;概述 模板方法&#xff08;Template Method&#xff09;是一种行为型设计模式。它定义了一个算法的基本框架&#xff0c;并且可能是《设计模式&#xff1a;可复用面向对象软件的基础》一书中最常用的设计模式之一。 模板方法的核心思想很容易理解。我们需要定义一…...

mysql查缺补漏

好文推荐&#xff1a; 【数据库】快速理解脏读、不可重复读、幻读-CSDN博客 再探幻读&#xff01;什么是幻读?为什么会产生幻读&#xff0c;MySQL中是怎么解决幻读的&#xff1f;-CSDN博客 引擎 mysql默认引擎&#xff1a;innodb 1.支持行锁 2.支持事务 3.支持外键 索引…...

跨越边界,大模型如何助推科技与社会的完美结合?

点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入&#xff01; 概述 2024年&#xff0c;大模型技术已成为人工智能领域的焦点。这不仅仅是一项技术进步&#xff0c;更是一次可能深刻影响社会发展方方面面的变革。大模型的交叉能否推动技术与社会的真正融合&#xff1f;2025年…...

哪吒闹海!SCI算法+分解组合+四模型原创对比首发!SGMD-FATA-Transformer-LSTM多变量时序预测

哪吒闹海&#xff01;SCI算法分解组合四模型原创对比首发&#xff01;SGMD-FATA-Transformer-LSTM多变量时序预测 目录 哪吒闹海&#xff01;SCI算法分解组合四模型原创对比首发&#xff01;SGMD-FATA-Transformer-LSTM多变量时序预测效果一览基本介绍程序设计参考资料 效果一览…...

前端【技术方案】浏览器兼容问题(含解决方案、CSS Hacks、条件注释、特性检测、Polyfill 等)

浏览器兼容性测试工具 https://www.browserstack.com/ HTML 兼容处理 问题1 - 不支持 HTML5 新标签 旧版浏览器&#xff08;主要是 IE8 及以下&#xff09;不支持 HTML5 新标签&#xff08;如 <header>、<nav>、<article> 等&#xff09; 解决方案 引入 H…...

荣耀手机Magic3系列、Magic4系列、Magic5系列、Magic6系列、Magic7系列详情对比以及最新二手价格预测

目录 荣耀Magic系列手机详细对比 最新二手价格预测 性价比分析 总结 以下是荣耀Magic系列手机的详细对比以及最新二手价格预测&#xff1a; 荣耀Magic系列手机详细对比 特性荣耀Magic3系列荣耀Magic4系列荣耀Magic5系列荣耀Magic6系列荣耀Magic7系列处理器骁龙888&#x…...

后盾人JS -- 模块化开发

开发模块管理引擎 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> </he…...

CNN卷积神经网络多变量多步预测,光伏功率预测(Matlab完整源码和数据)

代码地址&#xff1a;CNN卷积神经网络多变量多步预测&#xff0c;光伏功率预测&#xff08;Matlab完整源码和数据) 标题&#xff1a;CNN卷积神经网络多变量多步预测&#xff0c;光伏功率预测 一、引言 1.1 研究背景及意义 随着全球能源危机的加剧和环保意识的提升&#xff…...

深入 JVM 虚拟机:字符串常量池演变与 intern() 方法工作原理解析

🚀 作者主页: 有来技术 🔥 开源项目: youlai-mall ︱vue3-element-admin︱youlai-boot︱vue-uniapp-template 🌺 仓库主页: GitCode︱ Gitee ︱ Github 💖 欢迎点赞 👍 收藏 ⭐评论 📝 如有错误敬请纠正! 前言 在 Java 开发中,字符串常量池(String Constant…...

单向/双向,单层/多层RNN输入输出维度问题

单向/双向&#xff0c;单层/多层RNN输入输出维度问题 RNN单层单向RNNRnn CellRnn 双层单向RNN单层双向RNN双层双向RNN RNN 单层单向RNN Rnn Cell 循环神经网络最原始的Simple RNN实现如下图所示: 下面写出单个时间步对应的Rnn Cell计算公式: 如果用矩阵运算视角来看待的话&…...

chromium-mojo

https://chromium.googlesource.com/chromium/src//refs/heads/main/mojo/README.md 相关类&#xff1a;https://zhuanlan.zhihu.com/p/426069459 Core:https://source.chromium.org/chromium/chromium/src//main:mojo/core/README.md;bpv1;bpt0 embedder:https://source.chr…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

日常一水C

多态 言简意赅&#xff1a;就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过&#xff0c;当子类和父类的函数名相同时&#xff0c;会隐藏父类的同名函数转而调用子类的同名函数&#xff0c;如果要调用父类的同名函数&#xff0c;那么就需要对父类进行引用&#…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !

我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...

Docker拉取MySQL后数据库连接失败的解决方案

在使用Docker部署MySQL时&#xff0c;拉取并启动容器后&#xff0c;有时可能会遇到数据库连接失败的问题。这种问题可能由多种原因导致&#xff0c;包括配置错误、网络设置问题、权限问题等。本文将分析可能的原因&#xff0c;并提供解决方案。 一、确认MySQL容器的运行状态 …...

在golang中如何将已安装的依赖降级处理,比如:将 go-ansible/v2@v2.2.0 更换为 go-ansible/@v1.1.7

在 Go 项目中降级 go-ansible 从 v2.2.0 到 v1.1.7 具体步骤&#xff1a; 第一步&#xff1a; 修改 go.mod 文件 // 原 v2 版本声明 require github.com/apenella/go-ansible/v2 v2.2.0 替换为&#xff1a; // 改为 v…...

webpack面试题

面试题&#xff1a;webpack介绍和简单使用 一、webpack&#xff08;模块化打包工具&#xff09;1. webpack是把项目当作一个整体&#xff0c;通过给定的一个主文件&#xff0c;webpack将从这个主文件开始找到你项目当中的所有依赖文件&#xff0c;使用loaders来处理它们&#x…...