当前位置: 首页 > news >正文

UI自动化测试中如何处理验证码?

在UI自动化测试中处理验证码是常见的技术挑战,以下是分步解决方案及实际应用建议:


一、验证码处理策略对比

方法实现方式优点缺点适用场景
禁用验证码测试环境配置关闭验证码生成简单快捷,零成本无法测试验证码功能本身非验证码相关功能测试
万能验证码开发提供固定验证码(如"0000")稳定可靠,无需额外开发依赖环境配置,不真实测试环境全流程验证
OCR识别Tesseract/百度OCR识别图片模拟真实用户行为识别率低(复杂验证码<50%)简单数字/字母验证码
后端接口获取调用内部API获取当前有效验证码精准可靠需开发配合,存在安全风险有后端支持的企业内部系统
人工介入半自动化测试执行时暂停,手动输入验证码确保流程完整无法全自动化,效率低无法绕过的生产环境验证
第三方验证码服务购买打码平台服务(如Super鹰)高准确率(>95%)产生额外成本(0.5-1元/次)复杂验证码且预算充足

二、实战解决方案推荐

场景1:测试环境全流程测试
  • 方案:万能验证码 + 环境隔离
  • 实施步骤
    1. 与开发约定测试环境验证码固定为"TEST1234"
    2. 在自动化脚本中硬编码输入该值
    3. 使用Docker隔离测试环境,避免影响生产配置
场景2:生产环境冒烟测试
  • 方案:OCR识别 + 失败重试机制
  • 代码示例(Python + Selenium)
    from PIL import Image
    import pytesseractdef handle_captcha(driver):# 截取验证码区域driver.save_screenshot('screenshot.png')img = Image.open('screenshot.png')captcha_area = img.crop((100, 200, 200, 250))  # 根据实际位置调整坐标# OCR识别captcha_text = pytesseract.image_to_string(captcha_area)return captcha_text.strip()# 使用示例
    captcha = handle_captcha(driver)
    driver.find_element(By.ID, 'captcha_input').send_keys(captcha)# 添加重试逻辑
    if login_failed():captcha = handle_captcha(driver)retry_login(captcha)
    
场景3:企业级安全测试
  • 方案:后端接口解密 + JWT Token绕过
  • 架构设计
    成功
    失败
    自动化脚本
    调用内部Auth API
    获取临时Token
    携带Token访问系统
    告警通知
  • 实施要点
    • 开发提供专门测试接口获取验证码明文
    • 使用HTTPS+IP白名单保障接口安全

三、高级技巧:破解滑动验证码

方案:轨迹模拟 + 图像缺口识别
  1. 缺口定位

    • 使用OpenCV计算背景图和缺口图的像素差异
    import cv2def find_gap(bg_path, slice_path):bg = cv2.imread(bg_path)slice = cv2.imread(slice_path)result = cv2.matchTemplate(bg, slice, cv2.TM_CCOEFF_NORMED)min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)return max_loc[0]  # 返回缺口X坐标
    
  2. 轨迹模拟

    • 生成人类行为轨迹(先快后慢)
    def generate_track(distance):track = []current = 0mid = distance * 4/5t = 0.2while current < distance:if current < mid:a = 2else:a = -3v = v0 + a*tmove = v0*t + 0.5*a*t*tcurrent += movetrack.append(round(move))return track
    

四、面试回答示例

“在UI自动化测试中处理验证码需要根据测试场景选择合适策略:

  1. 测试环境:通过与开发协作,使用万能验证码或临时关闭验证码功能,确保自动化流水线畅通。例如在最近的项目中,我们约定测试环境验证码固定为‘TESTCODE’,脚本直接输入该值。
  2. 生产验证:对于必须验证的场景,采用OCR识别+失败重试机制。曾使用Tesseract实现60%识别率,结合三次重试使成功率提升至95%。
  3. 复杂验证码:对于滑动验证码,通过OpenCV缺口定位+模拟人类滑动轨迹破解。在金融项目中成功实现全自动化登录,节省50%手工验证时间。
  4. 企业级方案:与开发团队共建测试接口,获取验证码明文。通过HTTPS+IP白名单保障安全,实现100%稳定验证。”

通过 分层解决方案 + 技术细节 + 数据量化 的表述,既展现技术深度,又体现业务落地能力,显著提升面试竞争力。

相关文章:

UI自动化测试中如何处理验证码?

在UI自动化测试中处理验证码是常见的技术挑战&#xff0c;以下是分步解决方案及实际应用建议&#xff1a; 一、验证码处理策略对比 方法实现方式优点缺点适用场景禁用验证码测试环境配置关闭验证码生成简单快捷&#xff0c;零成本无法测试验证码功能本身非验证码相关功能测试万…...

华为交换机堆叠配置

一、CSS堆叠集群配置&#xff08;框式交换机&#xff09; 1、通过集群卡连接方式组建集群 [SwitchA] set css mode css-card \\配置集群卡连接方式 [SwitchA] set css id 1 \\配置成员交换机的集群ID(缺省值为1) [SwitchA] set css priority 100 \\配…...

Vue 和 dhtmlx-gantt 实现图表构建动态多级甘特图效果 ,横坐标为动态刻度不是日期

注意事项:1、横坐标根据日期转换成时间刻度在( gantt.config.scales);2、获取时间刻度的最大值(findMaxRepairTime);3、甘特图多级列表需注意二级三级每个父子id需要唯一(convertData) 安装依赖 npm install dhtmlx-gantt --save 在当前页引入和配置 dhtmlx-gantt im…...

collabora online+nextcloud+mariadb在线文档协助

1、环境 龙蜥os 8.9 docker 2、安装docker dnf -y install dnf-plugins-core dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sed -i shttps://download.docker.comhttps://mirrors.tuna.tsinghua.edu.cn/docker-ce /etc/yum.repos.…...

“可通过HTTP获取远端WWW服务信息”漏洞修复

环境说明&#xff1a;①操作系统&#xff1a;windows server&#xff1b;②nginx&#xff1a;1.27.1。 1.漏洞说明 “可通过HTTP获取远端WWW服务信息”。 修复前&#xff0c;在“响应标头”能看到Server信息&#xff0c;如下图所示&#xff1a; 修复后&#xff0c;“响应标头…...

【AI时代】-开发环境准备 之 Conda 创建 Python 环境 (含pip常用命令、jupyter 安装及汉化、自定义文档位置等配置)

一、 安装 Anaconda 1.1 下载并安装 https://www.anaconda.com/download/success 1.2 验证是否成功 CMD输入命令&#xff1a; conda --version注意&#xff1a;找不到命令需要配置环境变量&#xff1a; Path 中 添加 Anaconda 的安装路径&#xff1a; 如果没有修改安装位…...

[LeetCode] day19 454. 四数相加 II

题目链接 题目描述 给你四个整数数组 nums1、nums2、nums3 和 nums4 &#xff0c;数组长度都是 n &#xff0c;请你计算有多少个元组 (i, j, k, l) 能满足&#xff1a; 0 < i, j, k, l < n nums1[i] nums2[j] nums3[k] nums4[l] 0 示例 1&#xff1a; 输入&…...

LeetCodehot 力扣热题100 验证二叉搜索树

class Solution {vector<int> nums; // 用来存储二叉树节点值的数组 public:bool isValidBST(TreeNode* root) {inorder(root); // 中序遍历二叉树&#xff0c;填充 nums 数组// 遍历 nums 数组&#xff0c;检查是否为严格递增序列for(int i0; i<nums.size()-1; i){…...

四次挥手详解

文章目录 一、四次挥手各状态FIN_WAIT_1CLOSE_WAITFIN_WAIT_2LAST_ACKTIME_WAITCLOSE 二、双方同时调用close()&#xff0c;FIN_WAIT_1状态后进入CLOSING状态CLOSING状态 三、TIME_WAIT状态详解(1) TIME_WAIT状态下的2MSL是什么MSL &#xff08;报文最大生存时间&#xff09;为…...

Deepseek-v3 / Dify api接入飞书机器人go程序

准备工作 开通了接收消息权限的飞书机器人&#xff0c;例如我希望用户跟飞书机器人私聊&#xff0c;就需要开通这个权限&#xff1a;读取用户发给机器人的单聊消息 im:message.p2p_msg:readonly准备好飞书机器人的API key 和Secretdeepseek-v3的api keysecret&#xff1a;http…...

2025.2.9 每日学习记录2:技术报告写了一半+一点点读后感

0.近期主任务线 1.完成小论文准备 目标是3月份完成实验点1的全部实验和论文。 2.准备教资笔试 打算留个十多天左右&#xff0c;一次性备考笔试的三个科目 1.实习申请技术准备&#xff1a;微调、Agent、RAG 1.今日完成任务 1.电子斗蛐蛐&#xff08;文本书写领域&am…...

qml ToolBar详解

1、概述 在 QML 中&#xff0c;ToolBar 是一种常用的 UI 组件&#xff0c;通常位于窗口的顶部或底部&#xff0c;用于提供一系列的操作按钮、菜单或其他交互元素。它可以帮助用户快速访问应用程序的常用功能&#xff0c;提高用户操作的便捷性。ToolBar 可以包含多个 ToolButto…...

机器学习在癌症分子亚型分类中的应用

学习笔记&#xff1a;机器学习在癌症分子亚型分类中的应用——Cancer Cell 研究解析 1. 文章基本信息 标题&#xff1a;Classification of non-TCGA cancer samples to TCGA molecular subtypes using machine learning发表期刊&#xff1a;Cancer Cell发表时间&#xff1a;20…...

Ansible自动化部署K8s集群一 Ansible的基础使用实战

一、Ansible介绍 1.安装ansible: yum install ansible -y 2.ansible的架构图&#xff1a; 3.ansible四部分&#xff1a; inventory:ansible管理的主机信息&#xff0c;包括ip地址、ssh端口、账号和密码等 modules:任务均由模块完成 plugins:增加ansible的核心功能 pla…...

ZooKeeper Watcher 机制详解:从注册到回调的全过程

引言 在分布式系统中&#xff0c;数据的实时性和一致性是至关重要的。ZooKeeper 通过其 Watcher 机制提供了一种高效的方式来监听数据变化或事件&#xff0c;从而使客户端能够在数据发生变化时立即收到通知。本文将深入探讨 ZooKeeper 的 Watcher 机制&#xff0c;具体包括客户…...

flutter_tools/gradle Unsupported class file major version 65 问题解决

1.问题定位 使用 命令 flutter doctor --verbose 可以查看当前项目中&#xff0c;使用的java的版本。 [✓] Android Studio (version 2024.2)• Android Studio at /Applications/Android Studio.app/Contents• Flutter plugin can be installed from:&#x1f528; https…...

C++设计模式 - 模板模式

一&#xff1a;概述 模板方法&#xff08;Template Method&#xff09;是一种行为型设计模式。它定义了一个算法的基本框架&#xff0c;并且可能是《设计模式&#xff1a;可复用面向对象软件的基础》一书中最常用的设计模式之一。 模板方法的核心思想很容易理解。我们需要定义一…...

mysql查缺补漏

好文推荐&#xff1a; 【数据库】快速理解脏读、不可重复读、幻读-CSDN博客 再探幻读&#xff01;什么是幻读?为什么会产生幻读&#xff0c;MySQL中是怎么解决幻读的&#xff1f;-CSDN博客 引擎 mysql默认引擎&#xff1a;innodb 1.支持行锁 2.支持事务 3.支持外键 索引…...

跨越边界,大模型如何助推科技与社会的完美结合?

点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入&#xff01; 概述 2024年&#xff0c;大模型技术已成为人工智能领域的焦点。这不仅仅是一项技术进步&#xff0c;更是一次可能深刻影响社会发展方方面面的变革。大模型的交叉能否推动技术与社会的真正融合&#xff1f;2025年…...

哪吒闹海!SCI算法+分解组合+四模型原创对比首发!SGMD-FATA-Transformer-LSTM多变量时序预测

哪吒闹海&#xff01;SCI算法分解组合四模型原创对比首发&#xff01;SGMD-FATA-Transformer-LSTM多变量时序预测 目录 哪吒闹海&#xff01;SCI算法分解组合四模型原创对比首发&#xff01;SGMD-FATA-Transformer-LSTM多变量时序预测效果一览基本介绍程序设计参考资料 效果一览…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

计算机基础知识解析:从应用到架构的全面拆解

目录 前言 1、 计算机的应用领域&#xff1a;无处不在的数字助手 2、 计算机的进化史&#xff1a;从算盘到量子计算 3、计算机的分类&#xff1a;不止 “台式机和笔记本” 4、计算机的组件&#xff1a;硬件与软件的协同 4.1 硬件&#xff1a;五大核心部件 4.2 软件&#…...

SQL Server 触发器调用存储过程实现发送 HTTP 请求

文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...

SpringAI实战:ChatModel智能对话全解

一、引言&#xff1a;Spring AI 与 Chat Model 的核心价值 &#x1f680; 在 Java 生态中集成大模型能力&#xff0c;Spring AI 提供了高效的解决方案 &#x1f916;。其中 Chat Model 作为核心交互组件&#xff0c;通过标准化接口简化了与大语言模型&#xff08;LLM&#xff0…...

针对药品仓库的效期管理问题,如何利用WMS系统“破局”

案例&#xff1a; 某医药分销企业&#xff0c;主要经营各类药品的批发与零售。由于药品的特殊性&#xff0c;效期管理至关重要&#xff0c;但该企业一直面临效期问题的困扰。在未使用WMS系统之前&#xff0c;其药品入库、存储、出库等环节的效期管理主要依赖人工记录与检查。库…...

医疗AI模型可解释性编程研究:基于SHAP、LIME与Anchor

1 医疗树模型与可解释人工智能基础 医疗领域的人工智能应用正迅速从理论研究转向临床实践,在这一过程中,模型可解释性已成为确保AI系统被医疗专业人员接受和信任的关键因素。基于树模型的集成算法(如RandomForest、XGBoost、LightGBM)因其卓越的预测性能和相对良好的解释性…...