MapReduce到底是个啥?
在聊 MapReduce
之前不妨先看个例子:假设某短视频平台日活用户大约在7000万左右,若平均每一个用户产生3条行为日志:点赞、转发、收藏;这样就是两亿条行为日志,再假设每条日志大小为100个字节,那么一天就会产生将近20个GB左右的数据;
面对这么大的数据量,如何对这些数做一些统计分析呢?
以Java
为例:如果写一个程序,从一个近20个GB的日志文件里,一条一条读取日志并计算,直到两亿数据全部计算完毕,你认为会花费多长时间?
不妨做个实验,随机生产从0到100的数字,并将其写入文件当中,最终生成一个大小为20个GB左右的文件:
public void generateData() throws IOException {File file = new File("D:\\微信公众号\菜鸟进阶站.txt");if (!file.exists()) {try {file.createNewFile();} catch (IOException e) {e.printStackTrace();}}BufferedWriter bos = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file, true)));for (long i = 1; i < Integer.MAX_VALUE * 3.4; i++) {String data = String.valueOf(random.nextInt(100)+1);bos.write(data);if (i % 1000000 == 0) {bos.write("\n");}}bos.close();
}
使用代码来统计哪一个数字出现的次数最多(执行过程忘记截图了),最后得出结论:整个统计过程大概用了12分钟左右;目前还仅仅是 GB级别
,如果是 TB、PB
呢?
作为科技巨头的大佬:Google(谷歌)对该问题给出了答案;
谷歌从2003年到2006年先后发表了三篇论文:GFS、MapReduce和Big Table
。俗称三架马车,也正是这三驾马车正式打开了大数据的大门;今天我们主要聊一聊其中的MapReduce
;
该模型可以让开发者不用去考虑复杂的分布式架构,使得编写分布式代码就像单机版一样简单,自动将大任务拆分成小任务,分发到不同的机器上面进行并行计算;
简单来说 MapReduce
的核心思想就是分而治之;
说到分而治之,就让我想起来小时候语文老师给我们的留的作业,抄写鲁迅的所有文章。这工作量可算是巨大的了;
为了能按时提交作业,我便将作业撕成了3份,张三一份、李四一份、王五一份;让他们分别区抄写其中的一部分,最后由我将3份作业订装在一起交给老师;这整个过程中:将作业撕开分别交给3个人便是 Map
,最后我把作业组装起来便是 Reduce
;
上述过程只是一个笼统的概念。细的说,其实 MapReduce
大致话可以分为 Map、shuffle、Reduce
3个过程:
首先根据数据量大小,生产多个 Map
任务,每个 Map
任务会读取原数据并进行逻辑处理,最终生产一个 KV
键值对;同时对每条数据根据 key
的值计算所属分区,并打上一个逻辑标识,用来决定改数据回去到哪一个 Reduce
;
Shuffle
过程包含在 Map
和 Reduce
的两端,Map
端的 Shuffle
会对数据进行一个排序,得到一个有序的文件,该文件按照分区排序,并且每个分区内部的键值对都按照 Key
的值进行升序排序;Reduce
端的 Shuffle
,会去拉取属于自己分区的数据,并进行一个合并排序; Reduce
端根据业务需求,会对数据做进一步的处理并输出结果;
从上述过程中可以看出,Reduce
数量也就是分区的数量,分区相同的数据会经过 Shuffle
到达同一个 Reduce
当中;
以 WordCount
为例,该程序用来统计每个单词出现的次数:现在假设有份巨大的文件,我们将该文件进行切分,切分成三个 Map
任务,每个 Map
会对每行的内容按空格切分,每切下一个单词我们就将其组成一个 KV
键值对,其中 Key
代表这个单词 ,Value
代表该单词出现的次数;
由于我们的目标是统计每个单词出现的次数,因此我们只需要一个 Reduce
即可,在经过 MapShuffle
排序后,在每个 Map
端会生成一个有序的文件;
Reduce
端的 Shuffle
会去拉取属于自己分区的数据,并作为一个合并排序,最后 Reduce
会遍历每个单词对于的数组进行累加,并进行结果的直接输出;
相关文章:

MapReduce到底是个啥?
在聊 MapReduce 之前不妨先看个例子:假设某短视频平台日活用户大约在7000万左右,若平均每一个用户产生3条行为日志:点赞、转发、收藏;这样就是两亿条行为日志,再假设每条日志大小为100个字节,那么一天就会产…...
算法02-各种排序算法
各种常见排序算法总结 一. 冒泡排序 (Bubble Sort) 冒泡排序是一种简单的排序算法。它重复地遍历要排序的列表,比较相邻的元素,并交换它们的位置,直到整个列表排序完成。 A、说明: 特点: 通过不断交换相邻元素&am…...
python基础入门:8.1项目1:爬虫与数据分析
Python爬虫与数据分析全流程实战:从数据采集到可视化呈现 # 综合案例:电商价格监控分析系统 import requests from bs4 import BeautifulSoup import pandas as pd import matplotlib.pyplot as plt# 配置参数 HEADERS {User-Agent: Mozilla/5.0 (Wind…...
git 克隆指定 tag 的项目
git 克隆指定 tag 的项目 一、克隆指定tag的项目二、验证克隆结果 一、克隆指定tag的项目 以 tinyxml2项目 为例说明: git clone --branch V10.0.0 https://github.com/leethomason/tinyxml2.git解释: git clone:这是克隆一个远程仓库的命…...

DeepSeek学习笔记之——初识DeepSeek
春节假期回来已经有一周时间了,这假期综合症的症状是一点没减~~~ 假期期间除了这个欢乐详和的节日气氛,就数DeepSeek最火热了!!! 什么是DeepSeek? DeepSeek是一款由国内人工智能公司研发的大型语言模型,…...
Linux 调用可执行程序
Linux 调用可执行程序 1. system() 函数1.1 system() 函数的声明1.2 system() 函数的不同场景返回值1.3 system() 函数的代码示例 2. exec() 函数族2.1 exec() 函数族的声明2.2 exec() 函数族执行失败的情况2.3 exec() 函数族的代码示例 3. exec() 与 system() 的区别以及使用注…...
MVCC面试怎么答
说到mvcc这个比较抽象的概念,很多人都有点束手无策。因为它实际上偏理论,实际应用中很难用到。但在面试中出现频率又很高,一问大部分都G。所以怎么精简回答并且能抓住重点就很关键了。往上详细解说MVCC的太多了,我这里没那么多废话…...

用Go实现 SSE 实时推送消息(消息通知)——思悟项目技术4
目录 简介 工作原理 例子 使用场景 简介 SSE(Server - Sent Events)是一种允许服务器向客户端实时推送更新的 Web 技术。是一种基于 HTTP 协议的单向通信机制,服务器可以在客户端建立连接后,持续不断地向客户端发送事件流。客…...

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型
前言:哈喽,大家好,今天给大家分享一篇文章!并提供具体代码帮助大家深入理解,彻底掌握!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏关注哦 💕 目录 0基础…...
vue3:动态渲染后端返回的图片
问: div classleft-png 这里我用css设置了他的背景图片,但是现在我希望改为后端返回的图片,怎么写? 后端返回数据: const centerdata {img:;xxxx,title,xxxx,num:xxxx}? 回答: 好的ÿ…...
DeepSeek小白初识指南
1.什么是DeepSeek? DeepSeek是一个基于大语言模型(LLM)的智能助手,能够处理自然语言理解、生成、对话等任务。它广泛应用于聊天机器人、内容生成、数据分析等领域。 2.DeepSeek和OpenAI等大模型差异? 虽然DeepSeek和Op…...
图像锐化(QT)
如果不使用OpenCV,我们可以直接使用Qt的QImage类对图像进行像素级操作来实现锐化。锐化算法的核心是通过卷积核(如拉普拉斯核)对图像进行处理,增强图像的边缘和细节。 以下是一个完整的Qt应用程序示例,展示如何使用Qt…...

38.社区信息管理系统(基于springboothtml)
目录 1.系统的受众说明 2.需求分析及相关技术 2.1设计目的 2.2社区信息管理系统的特点 2.3可行性分析 2.3.1技术可行性 2.3.2运行可行性 2.4系统设计 2.4.1系统功能分析 2.4.2管理员权限功能设计 2.4.3业主权限功能设计 2.5系统的技术介绍 2.5.1 Html 2.5.2 Aja…...

游戏引擎学习第98天
仓库:https://gitee.com/mrxiao_com/2d_game_2 开始进行一点回顾 今天的目标是继续实现正常贴图的操作,尽管目前我们还没有足够的光照信息来使其完全有用。昨日完成了正常贴图相关的基础工作,接下来将集中精力实现正常贴图的基本操作,并准备…...
音频知识基础
音频知识基础 声音属性声音度量人耳特性通道数音频数字化传输接口 声音属性 响度 响度是人耳对声音强弱的主观感受; 主要和声波的振幅相关,同时也和频率有一定关系; 音调 音调是人耳对声音高低的主观感受; 主要与频率相关&#…...

【AI赋能】蓝耘智算平台实战指南:3步构建企业级DeepSeek智能助手
蓝耘智算平台实战指南:3步构建企业级DeepSeek智能助手 引言:AI大模型时代的算力革命 在2025年全球AI技术峰会上,DeepSeek-R1凭借其开源架构与实时推理能力,成为首个通过图灵测试的中文大模型。该模型在语言理解、跨模态交互等维…...

LabVIEW无人机飞行状态监测系统
近年来,无人机在农业植保、电力巡检、应急救灾等多个领域得到了广泛应用。然而,传统的目视操控方式仍然存在以下三大问题: 飞行姿态的感知主要依赖操作者的经验; 飞行中突发的姿态异常难以及时发现; 飞行数据缺乏系统…...

DeepSeek模型架构及优化内容
DeepSeek v1版本 模型结构 DeepSeek LLM基本上遵循LLaMA的设计: 采⽤Pre-Norm结构,并使⽤RMSNorm函数. 利⽤SwiGLU作为Feed-Forward Network(FFN)的激活函数,中间层维度为8/3. 去除绝对位置编码,采⽤了…...
html语义化
常见语义化标签有: (1)页面结构标签:<header>、<nav>、<main>、<article>、<section>、<aside>、<footer> (2)文本语义标签:<h1>-<h6>…...
python学习第十四天之机器学习名词介绍
名词介绍 1. 常用术语解释2.常见机器学习任务3. 机器学习常见算法1. 监督学习(Supervised Learning)2. 非监督学习(Unsupervised Learning)3.深度学习4.**对比总结** 1. 常用术语解释 拟合(Fit)࿱…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...

DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配
目录 一、C 内存的基本概念 1.1 内存的物理与逻辑结构 1.2 C 程序的内存区域划分 二、栈内存分配 2.1 栈内存的特点 2.2 栈内存分配示例 三、堆内存分配 3.1 new和delete操作符 4.2 内存泄漏与悬空指针问题 4.3 new和delete的重载 四、智能指针…...

DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...

力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...

华为OD机试-最短木板长度-二分法(A卷,100分)
此题是一个最大化最小值的典型例题, 因为搜索范围是有界的,上界最大木板长度补充的全部木料长度,下界最小木板长度; 即left0,right10^6; 我们可以设置一个候选值x(mid),将木板的长度全部都补充到x,如果成功…...

基于单片机的宠物屋智能系统设计与实现(论文+源码)
本设计基于单片机的宠物屋智能系统核心是实现对宠物生活环境及状态的智能管理。系统以单片机为中枢,连接红外测温传感器,可实时精准捕捉宠物体温变化,以便及时发现健康异常;水位检测传感器时刻监测饮用水余量,防止宠物…...
电脑桌面太单调,用Python写一个桌面小宠物应用。
下面是一个使用Python创建的简单桌面小宠物应用。这个小宠物会在桌面上游荡,可以响应鼠标点击,并且有简单的动画效果。 import tkinter as tk import random import time from PIL import Image, ImageTk import os import sysclass DesktopPet:def __i…...