当前位置: 首页 > news >正文

25、深度学习-自学之路-卷积神经网络基于MNIST数据集的程序展示

import keras #添加Keraskuimport sys,numpy as np  from keras.utils import np_utilsimport osfrom keras.datasets import mnist
print("licheng:"+"20"+'\n')
np.random.seed(1)(x_train,y_train),(x_test,y_test) = mnist.load_data()   #第一次进行Mnist 数据的下载
images,labels = (x_train[0:1000].reshape(1000,28*28)/255,y_train[0:1000])  #将图片信息和图片标识信息赋值给images 和labels
'''
print("x_train[0:1000]"+str(x_train[0:1000]))
print("x_train[0:1000].reshape(1000,28*28)"+str(x_train[0:1000].reshape(1000,28*28)))#是一个全零的矩阵
print("images:"+str(images))#感觉是一个10*100的矩阵。
print("labels"+str(labels))#0-10的杂乱的数字
'''
one_hot_lables = np.zeros((len(labels),10))#创建一个1000行,10列的全零矩阵
#print("one_hot_lables"+str(one_hot_lables))#for i,l in enumerate(labels):one_hot_lables[i][l] =1;
labels = one_hot_lablestest_images = x_test.reshape(len(x_test),28*28)/256
test_lables = np.zeros((len(y_test),10))
for i,l in enumerate(y_test):test_lables[i][l] = 1def tanh(x):return np.tanh(x)def tanh2deriv(output):return 1-(output**2)def softmax(x):temp = np.exp(x)return temp/np.sum(temp,axis=1,keepdims=True)#relu = lambda x:(x>=0)*x
#relu2deriv = lambda x:x>=0alpha,iterations = (2,300)
#hidden_size,
pixels_per_image,num_labels = (784,10)
batch_size = 128input_rows = 28
input_cols = 28kernel_rows = 3
kernel_cols = 3
num_kernels = 16hidden_size = ((input_rows - kernel_rows)*(input_cols - kernel_cols))*num_kernelskernels = 0.02*np.random.random((kernel_rows*kernel_cols,num_kernels)) -0.01
weight_1_2 = 0.2*np.random.random((hidden_size,num_labels)) - 0.1def get_image_section(layer,row_from,row_to,col_from,col_to):section = layer[:,row_from:row_to,col_from:col_to]return section.reshape(-1,1,row_to-row_from,col_to-col_from)for j in range(iterations):#一共循环350次error,correct_cnt = (0.0,0)for i in range(int(len(images)/batch_size)):  #有多少个图片就有多少个循环,#for i in range(1):batch_start,batch_end = ((i*batch_size),((i+1)*batch_size))#batch_start, batch_end = (0, 1)layer_0 = images[batch_start:batch_end]   #每一张图片解析出来的对应的像素点的单列矩阵或者是单行layer_0 = layer_0.reshape(layer_0.shape[0],28,28)#把layer_0重塑成一个三维数组,1,28,28#print("layer_0.shape"+str(np.shape(layer_0)))#print("layer_0"+str("   ")+str(layer_0))#layer_0.shapesects = list()#print("layer_0.shape[1]" +str(layer_0.shape[1]))#print("layer_0.shape[2]" + str(layer_0.shape[2]))for row_start in range(layer_0.shape[1] - kernel_rows):for col_start in range(layer_0.shape[2]-kernel_cols):sect = get_image_section(layer_0,row_start,row_start+kernel_rows,col_start,col_start+kernel_cols)#if row_start == 0:#print("sect" +str("   ")+str(sect))sects.append(sect)#将数据打散成3*3的小数据,然后组合在一起。一行可以转化成25个小的3*3#print("sect" +str("   ")+str(sect))expanded_input = np.concatenate(sects,axis =1)#print("expanded_input" + str("   ") + str(expanded_input))es = expanded_input.shape   #输出为:es   (1, 625, 3, 3)#print("es" + str("   ") + str(es))#print("es[0]" + str("   ") + str(es[0]))#print("es[1]" + str("   ") + str(es[1]))flattened_input = expanded_input.reshape(es[0]*es[1],-1) #输出为:flattened_input.shape   (625, 9)#print("flattened_input.shape" + str("   ") + str(np.shape(flattened_input)))kernel_output = flattened_input.dot(kernels)#输出为:kernel_output.shape   (625, 16)#print("kernel_output" + str("   ") + str(kernel_output))#print("kernel_output.shape" + str("   ") + str(np.shape(kernel_output)))#print("layer_0:"+str(layer_0))#layer_1 = relu(np.dot(layer_0,weight_0_1))#对二层神经网络的数据进行rule处理。小于0的数字都为0,大于0的数字都是本身。layer_1 = tanh(kernel_output.reshape(es[0],-1))#print("layer_1.shape" + str("   ") + str(np.shape(layer_1)))#layer_1.shape   (1, 10000)dropout_mask = np.random.randint(2,size=layer_1.shape)layer_1 *= dropout_mask*2#layer_2 = np.dot(layer_1,weight_1_2)#将第二层神经网络的值和第二层的权重加权和得到输出数据。layer_2 = softmax(np.dot(layer_1,weight_1_2))#error += np.sum((labels[batch_start:batch_end] - layer_2)**2)#把每一张图片的误差值进行累加for k in range(batch_size):labelset = labels[batch_start+k:batch_start+k+1]_inc = int(np.argmax(layer_2[k:k+1])== \np.argmax(labelset))#把每次预测成功率进行累加。correct_cnt +=_inc#layer_2_delta = np.full((100,10),(np.sum(labels[batch_start:batch_end]-layer_2))/batch_size)#print(layer_2.shape)layer_2_delta = (labels[batch_start:batch_end]-layer_2)\/(batch_size * layer_2.shape[0])#计算权重反向误差第二层#layer_2_delta = (labels[batch_start:batch_end]-layer_2)        #计算权重反向误差第二层layer_1_delta = layer_2_delta.dot(weight_1_2.T)*tanh2deriv(layer_1)#第一层权重误差layer_1_delta *= dropout_maskweight_1_2 += alpha *layer_1.T.dot(layer_2_delta)#修改第一层权重l1d_reshape = layer_1_delta.reshape(kernel_output.shape)k_update = flattened_input.T.dot(l1d_reshape)kernels -= alpha*k_update#weight_0_1 += alpha *layer_0.T.dot(layer_1_delta)#修改第二层权重text_correct_cnt = 0#sys.stdout.write("\r"+"I:"+str(j)+"error"+str(error/float(len(images)))[0:5] + "correct"+str(correct/float(len(images))))#验证测试组的数字被预测出来的概率。
#for j in range(10):
#    if(j%10 == 0 or j == iterations-1):
#        error,correct = (0.0,0)for i in range(len(test_images)):layer_0 = test_images[i:i+1]layer_0 = layer_0.reshape(layer_0.shape[0],28,28)layer_0.shapesects =  list()for row_start in range(layer_0.shape[1] - kernel_rows):for col_start in range(layer_0.shape[2] - kernel_cols):sect = get_image_section(layer_0,row_start,row_start+kernel_rows,col_start,col_start+kernel_cols)sects.append(sect)  expanded_input = np.concatenate(sects,axis =1)es = expanded_input.shapeflattened_input = expanded_input.reshape(es[0]*es[1],-1)kernel_output = flattened_input.dot(kernels)layer_1 = tanh(kernel_output.reshape(es[0],-1))layer_2 = np.dot(layer_1,weight_1_2)#error += np.sum((test_lables[i:i+1]-layer_2)**2)text_correct_cnt += int(np.argmax(layer_2)==np.argmax(test_lables[i:i+1]))if(j % 1 == 0):    print("\n"+"j"+str(j))sys.stdout.write("test-acc:"+str(text_correct_cnt/float(len(test_images))) + \"train-acc:"+str(correct_cnt/float(len(images))))print()
#训练结果
'''
licheng:20j0
test-acc:0.0288train-acc:0.055j1
test-acc:0.0273train-acc:0.037j2
test-acc:0.028train-acc:0.037j3
test-acc:0.0292train-acc:0.04j4
test-acc:0.0339train-acc:0.046j5
test-acc:0.0478train-acc:0.068j6
test-acc:0.0758train-acc:0.083j7
test-acc:0.1316train-acc:0.096j8
test-acc:0.2138train-acc:0.127j9
test-acc:0.2942train-acc:0.148j10
test-acc:0.3563train-acc:0.181j11
test-acc:0.4023train-acc:0.209j12
test-acc:0.4359train-acc:0.238j13
test-acc:0.4472train-acc:0.286j14
test-acc:0.4389train-acc:0.274j15
test-acc:0.3951train-acc:0.257j16
test-acc:0.2222train-acc:0.243j17
test-acc:0.0613train-acc:0.112j18
test-acc:0.0266train-acc:0.035j19
test-acc:0.0127train-acc:0.026j20
test-acc:0.0133train-acc:0.022j21
test-acc:0.0185train-acc:0.038j22
test-acc:0.0363train-acc:0.038j23
test-acc:0.0929train-acc:0.067j24
test-acc:0.1994train-acc:0.081j25
test-acc:0.3085train-acc:0.154j26
test-acc:0.4275train-acc:0.204j27
test-acc:0.5324train-acc:0.256j28
test-acc:0.5917train-acc:0.305j29
test-acc:0.6323train-acc:0.341j30
test-acc:0.6607train-acc:0.426j31
test-acc:0.6815train-acc:0.439j32
test-acc:0.7048train-acc:0.462j33
test-acc:0.717train-acc:0.484j34
test-acc:0.7313train-acc:0.505j35
test-acc:0.7355train-acc:0.53j36
test-acc:0.7417train-acc:0.548j37
test-acc:0.747train-acc:0.534j38
test-acc:0.7492train-acc:0.55j39
test-acc:0.7459train-acc:0.562j40
test-acc:0.7352train-acc:0.54j41
test-acc:0.708train-acc:0.496j42
test-acc:0.6486train-acc:0.456j43
test-acc:0.5212train-acc:0.353j44
test-acc:0.3312train-acc:0.234j45
test-acc:0.2055train-acc:0.174j46
test-acc:0.2162train-acc:0.136j47
test-acc:0.2694train-acc:0.171j48
test-acc:0.3255train-acc:0.172j49
test-acc:0.361train-acc:0.186j50
test-acc:0.4221train-acc:0.21j51
test-acc:0.5172train-acc:0.223j52
test-acc:0.6008train-acc:0.262j53
test-acc:0.6478train-acc:0.308j54
test-acc:0.6763train-acc:0.363j55
test-acc:0.696train-acc:0.402j56
test-acc:0.7079train-acc:0.434j57
test-acc:0.7209train-acc:0.441j58
test-acc:0.7304train-acc:0.475j59
test-acc:0.7358train-acc:0.475j60
test-acc:0.7405train-acc:0.525j61
test-acc:0.7499train-acc:0.517j62
test-acc:0.7534train-acc:0.517j63
test-acc:0.7608train-acc:0.538j64
test-acc:0.7646train-acc:0.554j65
test-acc:0.7726train-acc:0.57j66
test-acc:0.779train-acc:0.586j67
test-acc:0.7854train-acc:0.595j68
test-acc:0.7853train-acc:0.591j69
test-acc:0.7927train-acc:0.605j70
test-acc:0.7975train-acc:0.64j71
test-acc:0.8013train-acc:0.621j72
test-acc:0.8028train-acc:0.626j73
test-acc:0.8095train-acc:0.631j74
test-acc:0.8099train-acc:0.638j75
test-acc:0.8157train-acc:0.661j76
test-acc:0.8155train-acc:0.639j77
test-acc:0.8183train-acc:0.65j78
test-acc:0.8217train-acc:0.67j79
test-acc:0.8247train-acc:0.675j80
test-acc:0.8237train-acc:0.666j81
test-acc:0.8269train-acc:0.673j82
test-acc:0.8273train-acc:0.704j83
test-acc:0.8313train-acc:0.674j84
test-acc:0.8293train-acc:0.686j85
test-acc:0.8333train-acc:0.699j86
test-acc:0.8358train-acc:0.694j87
test-acc:0.8375train-acc:0.704j88
test-acc:0.837train-acc:0.697j89
test-acc:0.8398train-acc:0.704j90
test-acc:0.8396train-acc:0.687j91
test-acc:0.8436train-acc:0.705j92
test-acc:0.8436train-acc:0.711j93
test-acc:0.8447train-acc:0.721j94
test-acc:0.845train-acc:0.719j95
test-acc:0.8471train-acc:0.724j96
test-acc:0.8478train-acc:0.726j97
test-acc:0.848train-acc:0.718j98
test-acc:0.8495train-acc:0.719j99
test-acc:0.85train-acc:0.73j100
test-acc:0.8513train-acc:0.737j101
test-acc:0.8504train-acc:0.73j102
test-acc:0.8506train-acc:0.717j103
test-acc:0.8528train-acc:0.74j104
test-acc:0.8531train-acc:0.733j105
test-acc:0.8538train-acc:0.73j106
test-acc:0.8568train-acc:0.721j107
test-acc:0.857train-acc:0.75j108
test-acc:0.8558train-acc:0.731j109
test-acc:0.8578train-acc:0.744j110
test-acc:0.8589train-acc:0.754j111
test-acc:0.8578train-acc:0.732j112
test-acc:0.8583train-acc:0.747j113
test-acc:0.859train-acc:0.747j114
test-acc:0.8597train-acc:0.751j115
test-acc:0.8602train-acc:0.74j116
test-acc:0.8601train-acc:0.753j117
test-acc:0.8588train-acc:0.746j118
test-acc:0.8611train-acc:0.741j119
test-acc:0.8616train-acc:0.731j120
test-acc:0.8632train-acc:0.753j121
test-acc:0.8611train-acc:0.743j122
test-acc:0.8629train-acc:0.752j123
test-acc:0.8647train-acc:0.76j124
test-acc:0.8651train-acc:0.766j125
test-acc:0.8659train-acc:0.752j126
test-acc:0.868train-acc:0.756j127
test-acc:0.8649train-acc:0.767j128
test-acc:0.8661train-acc:0.747j129
test-acc:0.8669train-acc:0.753j130
test-acc:0.8695train-acc:0.753j131
test-acc:0.8691train-acc:0.76j132
test-acc:0.866train-acc:0.756j133
test-acc:0.8668train-acc:0.769j134
test-acc:0.8691train-acc:0.77j135
test-acc:0.8681train-acc:0.757j136
test-acc:0.8702train-acc:0.77j137
test-acc:0.8705train-acc:0.77j138
test-acc:0.8685train-acc:0.768j139
test-acc:0.8664train-acc:0.774j140
test-acc:0.8668train-acc:0.756j141
test-acc:0.8704train-acc:0.783j142
test-acc:0.8702train-acc:0.775j143
test-acc:0.8728train-acc:0.769j144
test-acc:0.8725train-acc:0.776j145
test-acc:0.8721train-acc:0.772j146
test-acc:0.8717train-acc:0.765j147
test-acc:0.8747train-acc:0.777j148
test-acc:0.8746train-acc:0.77j149
test-acc:0.8735train-acc:0.778j150
test-acc:0.8733train-acc:0.785j151
test-acc:0.8732train-acc:0.76j152
test-acc:0.8724train-acc:0.779j153
test-acc:0.8755train-acc:0.772j154
test-acc:0.8728train-acc:0.773j155
test-acc:0.8755train-acc:0.784j156
test-acc:0.8731train-acc:0.774j157
test-acc:0.8743train-acc:0.782j158
test-acc:0.8762train-acc:0.772j159
test-acc:0.8755train-acc:0.79j160
test-acc:0.8751train-acc:0.774j161
test-acc:0.8749train-acc:0.782j162
test-acc:0.8744train-acc:0.78j163
test-acc:0.8766train-acc:0.782j164
test-acc:0.874train-acc:0.796j165
test-acc:0.8754train-acc:0.798j166
test-acc:0.8766train-acc:0.794j167
test-acc:0.8747train-acc:0.784j168
test-acc:0.8768train-acc:0.796j169
test-acc:0.8757train-acc:0.789j170
test-acc:0.8767train-acc:0.79j171
test-acc:0.8732train-acc:0.791j172
test-acc:0.8766train-acc:0.797j173
test-acc:0.8773train-acc:0.789j174
test-acc:0.8778train-acc:0.781j175
test-acc:0.8758train-acc:0.799j176
test-acc:0.8774train-acc:0.785j177
test-acc:0.8766train-acc:0.796j178
test-acc:0.8784train-acc:0.803j179
test-acc:0.8788train-acc:0.794j180
test-acc:0.8779train-acc:0.794j181
test-acc:0.8779train-acc:0.8j182
test-acc:0.8786train-acc:0.791j183
test-acc:0.8778train-acc:0.787j184
test-acc:0.8768train-acc:0.781j185
test-acc:0.8765train-acc:0.786j186
test-acc:0.8764train-acc:0.793j187
test-acc:0.8788train-acc:0.796j188
test-acc:0.8792train-acc:0.789j189
test-acc:0.8764train-acc:0.79j190
test-acc:0.8774train-acc:0.787j191
test-acc:0.8766train-acc:0.782j192
test-acc:0.8802train-acc:0.798j193
test-acc:0.8783train-acc:0.789j194
test-acc:0.8797train-acc:0.785j195
test-acc:0.8792train-acc:0.807j196
test-acc:0.878train-acc:0.796j197
test-acc:0.8785train-acc:0.801j198
test-acc:0.8777train-acc:0.81j199
test-acc:0.8772train-acc:0.784j200
test-acc:0.8777train-acc:0.792j201
test-acc:0.8784train-acc:0.794j202
test-acc:0.8788train-acc:0.795j203
test-acc:0.8802train-acc:0.781j204
test-acc:0.8798train-acc:0.804j205
test-acc:0.878train-acc:0.779j206
test-acc:0.8788train-acc:0.792j207
test-acc:0.8763train-acc:0.793j208
test-acc:0.8794train-acc:0.792j209
test-acc:0.8798train-acc:0.803j210
test-acc:0.8788train-acc:0.804j211
test-acc:0.8792train-acc:0.797j212
test-acc:0.8764train-acc:0.791j213
test-acc:0.88train-acc:0.801j214
test-acc:0.8812train-acc:0.799j215
test-acc:0.8806train-acc:0.79j216
test-acc:0.88train-acc:0.8j217
test-acc:0.8804train-acc:0.802j218
test-acc:0.8786train-acc:0.807j219
test-acc:0.8819train-acc:0.797j220
test-acc:0.8795train-acc:0.799j221
test-acc:0.8789train-acc:0.815j222
test-acc:0.879train-acc:0.816
j223
test-acc:0.8793train-acc:0.809
j224
test-acc:0.8814train-acc:0.795
j225
test-acc:0.8796train-acc:0.799
j226
test-acc:0.8805train-acc:0.806
j227
test-acc:0.8803train-acc:0.808
j228
test-acc:0.8782train-acc:0.801
j229
test-acc:0.8803train-acc:0.814j230
test-acc:0.8808train-acc:0.8j231
test-acc:0.8808train-acc:0.798j232
test-acc:0.8808train-acc:0.82j233
test-acc:0.8794train-acc:0.794j234
test-acc:0.8809train-acc:0.806j235
test-acc:0.8807train-acc:0.808j236
test-acc:0.8789train-acc:0.802j237
test-acc:0.8796train-acc:0.81j238
test-acc:0.8768train-acc:0.805j239
test-acc:0.8781train-acc:0.792j240
test-acc:0.8786train-acc:0.809j241
test-acc:0.8761train-acc:0.802j242
test-acc:0.8775train-acc:0.811j243
test-acc:0.8806train-acc:0.814j244
test-acc:0.8795train-acc:0.804j245
test-acc:0.8787train-acc:0.801j246
test-acc:0.8776train-acc:0.795j247
test-acc:0.8785train-acc:0.808j248
test-acc:0.8788train-acc:0.803j249
test-acc:0.8776train-acc:0.813j250
test-acc:0.879train-acc:0.808j251
test-acc:0.8788train-acc:0.803j252
test-acc:0.8791train-acc:0.812j253
test-acc:0.8793train-acc:0.804j254
test-acc:0.8779train-acc:0.815j255
test-acc:0.8798train-acc:0.811j256
test-acc:0.8798train-acc:0.806j257
test-acc:0.8801train-acc:0.803j258
test-acc:0.8779train-acc:0.795j259
test-acc:0.8799train-acc:0.803j260
test-acc:0.8801train-acc:0.805j261
test-acc:0.8788train-acc:0.807j262
test-acc:0.8786train-acc:0.804j263
test-acc:0.8792train-acc:0.806j264
test-acc:0.8779train-acc:0.796j265
test-acc:0.8785train-acc:0.821j266
test-acc:0.8794train-acc:0.81j267
test-acc:0.8784train-acc:0.816j268
test-acc:0.8777train-acc:0.812j269
test-acc:0.8792train-acc:0.812j270
test-acc:0.8779train-acc:0.813j271
test-acc:0.8782train-acc:0.82j272
test-acc:0.8791train-acc:0.821j273
test-acc:0.878train-acc:0.823j274
test-acc:0.8788train-acc:0.816j275
test-acc:0.8794train-acc:0.82j276
test-acc:0.8779train-acc:0.829j277
test-acc:0.8794train-acc:0.809j278
test-acc:0.8751train-acc:0.806j279
test-acc:0.8796train-acc:0.813j280
test-acc:0.88train-acc:0.816j281
test-acc:0.8797train-acc:0.819j282
test-acc:0.8805train-acc:0.809j283
test-acc:0.8804train-acc:0.811j284
test-acc:0.8779train-acc:0.808j285
test-acc:0.8818train-acc:0.82j286
test-acc:0.8791train-acc:0.822j287
test-acc:0.8792train-acc:0.817j288
test-acc:0.877train-acc:0.814j289
test-acc:0.8785train-acc:0.807j290
test-acc:0.8781train-acc:0.817j291
test-acc:0.8795train-acc:0.82j292
test-acc:0.8803train-acc:0.824j293
test-acc:0.8779train-acc:0.812j294
test-acc:0.8784train-acc:0.816j295
test-acc:0.8771train-acc:0.817j296
test-acc:0.877train-acc:0.826j297
test-acc:0.8775train-acc:0.816j298
test-acc:0.8774train-acc:0.804j299
test-acc:0.8775train-acc:0.814
'''

从运行结果上看,其实和我们上次的程序处理的差不多。

其实这么来看的话,我们就需要进行更多的优化。其实有很多人已经做过相关的优化程序。后面我们将会学习的时候,更加深入的去理解别的更好的算法。

相关文章:

25、深度学习-自学之路-卷积神经网络基于MNIST数据集的程序展示

import keras #添加Keraskuimport sys,numpy as np from keras.utils import np_utilsimport osfrom keras.datasets import mnist print("licheng:""20"\n) np.random.seed(1)(x_train,y_train),(x_test,y_test) mnist.load_data() #第一次…...

【C++】解锁<list>的正确姿势

> 🍃 本系列为初阶C的内容,如果感兴趣,欢迎订阅🚩 > 🎊个人主页:[小编的个人主页])小编的个人主页 > 🎀 🎉欢迎大家点赞👍收藏⭐文章 > ✌️ 🤞 &#x1…...

Qt中的事件

写一个 可以拖动的按钮 DraggablePushButton.h 头文件 #ifndef DRAGGABLEPUSHBUTTON_H #define DRAGGABLEPUSHBUTTON_H#include <QPushButton> #include <QMouseEvent>class DraggablePushButton : public QPushButton {Q_OBJECTpublic:explicit DraggablePushBu…...

变化检测相关论文可读list

一些用得上的&#xff1a; 遥感变化检测常见数据集https://github.com/rsdler/Remote-Sensing-Change-Detection-Dataset/ 代码解读&#xff1a;代码解读 | 极简代码遥感语义分割&#xff0c;结合GDAL从零实现&#xff0c;以U-Net和建筑物提取为例 NeurIPS2024: https://mp.w…...

Ansible中playbook的变量

变量 playbook的变量有以下几种 在playbook中用户自定义的变量远程主机中由Ansible收集的变量在文件模板中使用的上述两种变量把任务结果作为一个变量使用&#xff0c;叫注册变量用户在执行playbook时&#xff0c;通过命令行传入的变量&#xff0c;叫做额外变量 在playbook中…...

亚信安全正式接入DeepSeek

亚信安全致力于“数据驱动、AI原生”战略&#xff0c;早在2024年5月&#xff0c;推出了“信立方”安全大模型、安全MaaS平台和一系列安全智能体&#xff0c;为网络安全运营、网络安全检测提供AI技术能力。自2024年12月DeepSeek-V3发布以来&#xff0c;亚信安全人工智能实验室利…...

相似性图相关性重构网络用于无监督跨模态哈希

《Similarity Graph-correlation Reconstruction Network for unsupervised cross-modal hashing》 摘要1. 引言2. 相关工作2.1. 监督跨模态哈希方法2.2. 无监督跨模态哈希方法 3. 方法论3.1 问题定义3.2 特征提取3.3 模态内关系图构建3.4. 局部关系图重置3.5. 跨模态关系图构建…...

【Bug】属性 PackageVersion 应在所有目标框架中具有单个值,但却具有以下值

文章目录 问题问题代码原因解决处理Bug的具体步骤 问题 严重性 代码 说明 项目 文件 行 禁止显示状态 错误(活动) NU1105 无法读取“x”的项目信息: 属性 PackageVersion 应在所有目标框架中具有单个值&#xff0c;但却具有以下值: 1.0.0, 1.0.5 x (net8.0-android), x (net8.…...

C++ Primer 类型转换

欢迎阅读我的 【CPrimer】专栏 专栏简介&#xff1a;本专栏主要面向C初学者&#xff0c;解释C的一些基本概念和基础语言特性&#xff0c;涉及C标准库的用法&#xff0c;面向对象特性&#xff0c;泛型特性高级用法。通过使用标准库中定义的抽象设施&#xff0c;使你更加适应高级…...

【CS61A 2024秋】Python入门课,全过程记录P7(Week13 Macros至完结)【完结撒花!】

文章目录 关于新的问题更好的解决方案Week13Mon Macros阅读材料Lab 11: Programs as Data, MacrosQ1: WWSD: QuasiquoteQ2: If ProgramQ3: Exponential PowersQ4: Repeat Wed SQL阅读材料Disc 11: MacrosQ1: Mystery MacroQ2: Multiple AssignmentQ3: Switch Optional Contest:…...

SSH隧道+Nginx:绿色通道详解(SSH Tunnel+nginx: Green Channel Detailed Explanation)

SSH隧道Nginx&#xff1a;内网资源访问的绿色通道 问题背景 模拟生产环境&#xff0c;使用两层Nginx做反向代理&#xff0c;请求公网IP来访问内网服务器的网站。通过ssh隧道反向代理来实现&#xff0c;重点分析一下nginx反代的基础配置。 实验环境 1、启动内网服务器的tomca…...

LabVIEW用户界面设计原则

在LabVIEW开发中&#xff0c;用户界面&#xff08;UI&#xff09;设计不仅仅是为了美观&#xff0c;它直接关系到用户的操作效率和体验。一个直观、简洁、易于使用的界面能够大大提升软件的可用性&#xff0c;尤其是在复杂的实验或工业应用中。设计良好的UI能够减少操作错误&am…...

Datawhale 数学建模导论二 2025年2月

第6章 数据处理与拟合模型 本章主要涉及到的知识点有&#xff1a; 数据与大数据Python数据预处理常见的统计分析模型随机过程与随机模拟数据可视化 本章内容涉及到基础的概率论与数理统计理论&#xff0c;如果对这部分内容不熟悉&#xff0c;可以参考相关概率论与数理统计的…...

SQL CASE表达式的用法

SQL CASE表达式的用法 一、CASE表达式的基础语法简单CASE表达式搜索CASE表达式 二、简单CASE表达式的应用示例三、搜索CASE表达式的应用示例四、CASE表达式在聚合函数中的应用五、嵌套CASE表达式的应用 今天在也无力用到了CASE表达式&#xff0c;于是有了这篇博客&#xff0c;C…...

趣味魔法项目 LinuxPDF —— 在 PDF 中启动一个 Linux 操作系统

最近&#xff0c;一位开源爱好者开发了一个LinuxPDF 项目&#xff08;ading2210/linuxpdf: Linux running inside a PDF file via a RISC-V emulator&#xff09;&#xff0c;它的核心功能是在一个 PDF 文件中启动并运行 Linux 操作系统。它通过巧妙地使用 PDF 文件格式中的 Ja…...

win32汇编环境,窗口程序使用跟踪条(滑块)控件示例一

;运行效果 ;win32汇编环境,窗口程序使用跟踪条(滑块)控件示例一 ;生成2条横的跟踪条,分别设置不同的数值范围,设置不同的进度副度的例子 ;直接抄进RadAsm可编译运行。重要部分加备注。 ;下面为asm文件 ;>>>>>>>>>>>>>>>>>…...

mars3d接入到uniapp的时候ios上所有地图的瓦片都无法加载解决方案

用的是【Mars3d】官网的uniapp的仓库&#xff0c;安卓没有问题&#xff0c;但是ios的不行 相关链接 mars3d-uni-app: uni-app技术栈下的Mars3D项目模板 解决方案&#xff1a;感觉所有图片请求全被拦截了 uniapp的ios内核不允许跨域&#xff0c;需要先把瓦片下载后转base64&…...

使用 Notepad++ 编辑显示 MarkDown

Notepad 是一款免费的开源文本编辑器&#xff0c;专为 Windows 用户设计。它是替代记事本&#xff08;Notepad&#xff09;的最佳选择之一&#xff0c;因为它功能强大且轻量级。Notepad 支持多种编程语言和文件格式&#xff0c;并可以通过插件扩展其功能。 Notepad 是一款功能…...

wordpress主题制作

工具/原料 <P><BR>使用divcss语言编写的html静态页面一个</P> <P>Macromedia Dreamweaver软件<BR></P> WordPress主题结构分析 1 1、index.php首页模板&#xff08;最基本&#xff09; ---- 1、header.php头部 ---- 2、sidebar.php侧边…...

MybatisPlus常用增删改查

记录下MybatisPlus的简单的增删改查 接口概述 Service和Mapper区别 Mapper简化了单表的sql操作步骤&#xff08;CRUD&#xff09;&#xff0c;而Serivce则是对Mapper的功能增强。 Service虽然加入了数据库的操作&#xff0c;但还是以业务功能为主&#xff0c;而更加复杂的SQL…...

PTC过流保护器件工作原理及选型方法

PTC过流保护器件 ‌&#xff08;Positive Temperature Coefficient&#xff0c;正温度系数热敏电阻&#xff09;是一种过流保护元件&#xff0c;其工作原理基于电阻值随温度变化的特性。当电路正常工作时&#xff0c;PTC的阻值很小&#xff0c;电流可以顺畅通过&#xff1b;但当…...

Ubuntu20.04启动python的虚拟环境

如果你使用 mkvirtualenv 来创建虚拟环境&#xff0c;说明你已经安装了 virtualenvwrapper&#xff0c;这是一个用于管理 Python 虚拟环境的工具。 激活虚拟环境 要激活你使用 mkvirtualenv 创建的虚拟环境&#xff0c;按照以下步骤操作&#xff1a; 1.确保已经安装了 virtu…...

在CSDN发布AWS Proton解决方案:实现云原生应用的标准化部署

引言&#xff1a;云原生时代的部署挑战 在云原生应用开发中&#xff0c;基础设施管理的复杂性已成为团队面临的核心挑战。随着微服务架构的普及&#xff0c;每个服务可能包含数十个AWS资源&#xff08;如Lambda、API Gateway、ECS集群等&#xff09;&#xff0c;传统的手动配置…...

thinkphp-queue队列随笔

安装 # 创建项目 composer create-project topthink/think 5.0.*# 安装队列扩展 composer require topthink/think-queue 配置 // application/extra/queue.php<?php return [connector > Redis, // Redis 驱动expire > 0, // 任务的过期时间…...

云计算 Linux Rocky day03(which、快捷键、mount、家目录、ls、alias、mkdir、rm、mv、cp、grep)

云计算 Linux Rocky day03&#xff08;which、快捷键、mount、家目录、ls、alias、mkdir、rm、mv、cp、grep&#xff09; 目录 云计算 Linux Rocky day03&#xff08;which、快捷键、mount、家目录、ls、alias、mkdir、rm、mv、cp、grep&#xff09;1.which找到命令所对应的程序…...

[华为eNSP] OSPF综合实验

目录 配置流程 画出拓扑图、标注重要接口IP 配置客户端IP 配置服务端IP 配置服务器服务 配置路由器基本信息&#xff1a;名称和接口IP 配置路由器ospf协议 测试结果 通过配置OSPF路由协议&#xff0c;实现跨多路由器的网络互通&#xff0c;并验证终端设备的访问能力。 …...

会计 - 金融负债和权益工具

一、金融负债和权益工具区分的基本原则 (1)是否存在无条件地避免交付现金或其他金融资产的合同义务 如果企业不能无条件地避免以交付现金或其他金融资产来履行一项合同义务,则该合同义务符合金融负债的义务。 常见的该类合同义务情形包括:- 不能无条件避免的赎回; -强制…...

PDF 转 HTML5 —— HTML5 填充图形不支持 Even-Odd 奇偶规则?(第一部分)

在填充 PDF 中的图形时&#xff08;以及许多其他技术中&#xff09;&#xff0c;你可以选择使用 Even-Odd&#xff08;奇偶&#xff09; 或 Non-Zero&#xff08;非零&#xff09; 填充规则。 对于那些已经在想“你在说啥&#xff1f;”的朋友&#xff0c;别担心&#xff0c;我…...

Leetcode 1892. 页面推荐Ⅱ

1.题目基本信息 1.1.题目描述 表&#xff1a; Friendship ---------------------- | Column Name | Type | ---------------------- | user1_id | int | | user2_id | int | ---------------------- (user1_id,user2_id) 是 Friendship 表的主键(具有唯一值的列的组合…...

高效绘制业务流程图!专业模板免费下载

在复杂的业务流程管理中&#xff0c;可视化工具已成为提升效能的核心基础设施。为助力开发者、项目经理及业务架构师高效落地流程标准化&#xff0c;本文将为你精选5套开箱即用的专业流程图模板。这些模板覆盖跨部门协作、电商订单、客户服务等高频场景&#xff0c;具备以下核心…...