当前位置: 首页 > news >正文

【机器学习】数据预处理之scikit-learn的Scaler与自定义Scaler类进行数据归一化

scikit-learn的Scaler数据归一化

  • 一、摘要
  • 二、训练数据集和测试数据集的归一化处理原则
  • 三、scikit-learn中的Scalar类及示例
  • 四、自定义StandardScaler类进行数据归一化处理
  • 五、小结

一、摘要

本文主要介绍了scikit-learn中Scaler的使用方法,特别强调了数据归一化在机器学习过程中的重要性。讲述了归一化算法在训练模型前对训练数据集的处理,以及预测时对测试数据集的正确归一化方式。强调了保存训练数据集得到的均值和方差的重要性,并介绍了scalar类在数据处理中的封装理念和过程。最后通过实际代码示例,演示了如何使用standard scalar对数据进行归一化处理,并进行了knn分类实验,展示了归一化处理对提高模型预测准确度的重要性。
在这里插入图片描述

二、训练数据集和测试数据集的归一化处理原则

  1. 训练数据集用于训练模型,测试数据集用于评估模型性能。
  2. 归一化处理包括均值和方差的计算,用于将数据转换为标准正态分布。
  3. 测试数据集应使用训练数据集得到的均值和方差进行归一化处理
  4. 不应直接对测试数据集计算均值和方差,应使用训练数据集的均值和方差

三、scikit-learn中的Scalar类及示例

在这里插入图片描述

  1. Scalar类封装了数据的归一化处理,使流程与机器学习算法一致。
  2. fit方法用于计算训练数据集的均值和方差,保存关键信息。
  3. transform方法用于对输入样例进行归一化处理,输出结果。
  4. 使用scalar类可以方便地对后续样本进行归一化,并送入机器学习算法中进行预测处理。
  5. StandardScaler的使用示例,具体实现步骤如下:
    • 1.加载鸢尾花数据集,分为训练数据集和测试数据集。

      import numpy as np 
      from sklearn import datasets# 引入鸢尾花数据集
      iris = datasets.load_iris()# 特征矩阵和标签向量
      X = iris.data
      y = iris.target# 将特征矩阵划分成训练集和测试集及其对应的特征向量
      from sklearn.model_selection import train_test_split
      X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=666)
      
    • 2.使用StandardScaler对训练数据集进行归一化处理。

      # 使用StandardScaler对训练数据集进行归一化处理.
      from sklearn.preprocessing import StandardScaler
      # 初始化对象
      standardScaler = StandardScaler()
      # 训练数据集进行归一化
      standardScaler.fit(X_train)
      X_train_standard = standardScaler.transform(X_train)
      X_train_standard
      

      执行效果:
      在这里插入图片描述

    • 3.使用相同的StandardScaler对测试数据集进行归一化处理。

      # 使用StandardScaler对测试数据集进行归一化处理.
      standardScaler.fit(X_test)
      X_test_standard = standardScaler.transform(X_test)
      X_test_standard
      

      执行效果:
      在这里插入图片描述

    • 4.使用归一化后的数据训练k-近邻分类器,并评估分类准确度。

      # 使用归一化后的数据训练k-近邻分类器,并评估分类准确度。
      from sklearn.neighbors import KNeighborsClassifier# 初始化分类器
      knn_clf = KNeighborsClassifier(n_neighbors=3,n_jobs=-1)# 调用fit函数
      knn_clf.fit(X_train_standard,y_train)# 调用score函数
      knn_clf.score(X_test_standard,y_test)
      

      执行效果:
      在这里插入图片描述

    • 5.对比未归一化处理的测试数据集会导致分类准确度降低

      # 传入未归一化的测试集
      knn_clf.score(X_test,y_test)
      

      执行效果:
      在这里插入图片描述
      传入未归一化的测试集后,kNN分类器的准确度就下降了很多。

四、自定义StandardScaler类进行数据归一化处理

  1. 创建自定义StandardScaler类,包含fit和transform方法。
  2. fit方法计算训练数据集的均值和方差,保存为类的属性。
  3. transform方法使用训练数据集的均值和方差对输入数据进行归一化处理。
  4. 自定义StandardScaler的使用方式与sklearn中的StandardScaler一致。
  5. 自定义完整代码如下:
    import numpy as npclass MyStandardScaler:def __init__(self):self.mean_ = None  # 均值self.scale_ = None  # 方差def fit(self, X):"""根据训练集X(二维的)获得数据的均值和方差"""assert X.ndim == 2, \"The dimenstion of X must be 2."self.mean_ = np.array([(np.mean(X[:, col])) for col in range(X.shape[1])])self.scale_ = np.array([(np.std(X[:, col])) for col in range(X.shape[1])])return selfdef transform(self, X):"""将X进行均值方差归一化处理"""assert X.ndim == 2, \"The dimenstion of X must be 2."assert self.mean_ is not None and self.scale_ is not None, \"must fit before transform."assert X.shape[1] == len(self.mean_), \"The number of X`s features must be equal to the number of self.mean_. "# 定义一个与X大小一致的空的矩阵retX = np.empty(shape=X.shape, dtype=float)# 均值方差归一化算法for col in range(X.shape[1]):retX[:, col] = (X[:, col] - self.mean_[col]) / self.scale_[col]return retX
    
  6. 在jupyter中执行效果如下:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

五、小结

本文围绕 scikit - learn 中 Scaler 的使用方法展开介绍,着重强调了数据归一化在机器学习中的重要性。文中阐述了归一化算法在训练模型前对训练数据集的处理操作,以及预测时对测试数据集的正确归一化方式。特别指出保存训练数据集所得均值和方差的重要意义,还介绍了 scalar 类在数据处理中的封装理念与过程。最后借助实际代码示例,演示了运用 standard scalar 对数据进行归一化处理的过程,并开展了 knn 分类实验,以此展示归一化处理对提升模型预测准确度的重要作用。

相关文章:

【机器学习】数据预处理之scikit-learn的Scaler与自定义Scaler类进行数据归一化

scikit-learn的Scaler数据归一化 一、摘要二、训练数据集和测试数据集的归一化处理原则三、scikit-learn中的Scalar类及示例四、自定义StandardScaler类进行数据归一化处理五、小结 一、摘要 本文主要介绍了scikit-learn中Scaler的使用方法,特别强调了数据归一化在…...

android的第一个app项目(java版)

一.学习java重要概念 java的基本类型的语言方法和C语言很像,这都是我们要学的东西和学过的东西。那些基础东西,就不和大家讨论了,一起看一下java的一些知识架构。 1.封装 封装是面向对象编程中的一个核心概念,它涉及到将数据和操…...

上位机知识篇---SSHSCP密钥与密钥对

文章目录 前言第一部分:SCP(Secure Copy Protocol)功能使用方法1.从本地复制到远程主机2.从远程主机复制到本地3.复制整个目录4.指定端口5.压缩传输 第二部分:SSH(Secure Shell)功能使用方法1.远程登录2.指…...

智慧物流新引擎:ARM架构工控机在自动化生产线中的应用

工业自动化程度的不断提升,对高性能、低功耗和高可靠性的计算设备需求日益增长。ARM架构工控机因其独特的优势,在多个工业领域得到了广泛应用。本文将深入探讨ARM架构工控机的特点及其在具体工业场景中的应用。 ARM架构工控机的主要优势 高效能与低功耗…...

[MySQL]2-MySQL索引

目录 1.索引🌟 1.1索引结构 B树 B树 聚簇索引(一级索引)与非聚簇索引(二级索引) 回表操作 1.2索引碎片 清理索引碎片的方法 1.3索引匹配方式🌟 在数据列上使用函数或者计算会导致索引失效的原因 …...

DeepSeek冲击下,奥特曼刚刚给出对AGI的「三个观察」,包括成本速降

来源 | 机器之心 今天凌晨,OpenAI CEO 再次发布长文,重申自己对于 AGI 的三个观察。 核心观点如下: 1. 人工智能模型的智能大致等于用于训练和运行该模型的资源的对数。 2. 使用一定水平的人工智能的成本每 12 个月就会下降约 10 倍&#x…...

新数据结构(8)——包装类

基本数据类型(轻点) Java基本数据类型在内存中占用固定的大小,并且直接存储值,而不是对象的引用 整数类型 byte:8位,存储范围从-128到127 short:16位,存储范围从-32,768到32,767 …...

P5:使用pytorch实现运动鞋识别

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 我的环境 语言环境:python 3.7.12 编译器:pycharm 深度学习环境:tensorflow 2.7.0 数据:本地数据集-运动鞋 一…...

讲解下SpringBoot中MySql和MongoDB的配合使用

在Spring Boot中,MySQL和MongoDB可以配合使用,以充分发挥关系型数据库和非关系型数据库的优势。MySQL适合处理结构化数据,而MongoDB适合处理非结构化或半结构化数据。以下是如何在Spring Boot中同时使用MySQL和MongoDB的详细讲解。 1. 添加依…...

《手札·行业篇》开源Odoo MES系统与SKF Observer Phoenix API在化工行业的双向对接方案

一、项目背景 化工行业生产过程复杂,设备运行条件恶劣,对设备状态监测、生产数据采集和质量控制的要求极高。通过开源Odoo MES系统与SKF Observer Phoenix API的双向对接,可以实现设备状态的实时监测、生产数据的自动化采集以及质量数据的同步…...

数据结构与算法之数组: LeetCode 905. 按奇偶排序数组 (Ts版)

按奇偶排序数组 https://leetcode.cn/problems/sort-array-by-parity/description/ 描述 给你一个整数数组 nums,将 nums 中的的所有偶数元素移动到数组的前面,后跟所有奇数元素。 返回满足此条件的 任一数组 作为答案。 示例 1 输入:n…...

【STM32】HAL库Host MSC读写外部U盘及FatFS文件系统的USB Disk模式

【STM32】HAL库Host MSC读写外部U盘及FatFS文件系统的USB Disk模式 在先前 分别介绍了FatFS文件系统和USB虚拟U盘MSC配置 前者通过MCU读写Flash建立文件系统 后者通过MSC连接电脑使其能够被操作 这两者可以合起来 就能够实现同时在MCU、USB中操作Flash的文件系统 【STM32】通过…...

docker nginx 配置文件详解

在平常的开发工作中,我们经常需要访问静态资源(图片、HTML页面等)、访问文件目录、部署项目时进行负载均衡等。那么我们就会使用到Nginx,nginx.conf 的配置至关重要。那么今天主要结合访问静态资源、负载均衡等总结下 nginx.conf …...

如何实现华为云+deepseek?

在华为云上实现跨账号迁移数据或部署DeepSeek模型,可以通过以下步骤完成: 跨账号数据迁移 创建委托:在源账号中创建一个委托(Agency),授予目标账号访问数据的权限。 复制镜像:在源账号中&…...

【学习笔记】计算机网络(三)

第3章 数据链路层 文章目录 第3章 数据链路层3.1数据链路层的几个共同问题3.1.1 数据链路和帧3.1.2 三个基本功能3.1.3 其他功能 - 滑动窗口机制 3.2 点对点协议PPP(Point-to-Point Protocol)3.2.1 PPP 协议的特点3.2.2 PPP协议的帧格式3.2.3 PPP 协议的工作状态 3.3 使用广播信…...

稀土抑烟剂——为汽车火灾安全增添防线

一、稀土抑烟剂的基本概念 稀土抑烟剂是一类基于稀土元素(如稀土氧化物和稀土金属化合物)开发的高效阻燃材料。它可以显著提高汽车内饰材料的阻燃性能,减少火灾发生时有毒气体和烟雾的产生。稀土抑烟剂不仅能提升火灾时的安全性,…...

Qt Pro、Pri、Prf

一、概述 1、在Qt中,通常使用.pro(project)、pri(private include)、prf(project file)三种文件扩展名来组织项目。对于模块化编程,Qt提供了Pro和Pri,Pro管理项目,Pri管理模块。 2、pro文件是Qt项目的核心文件,包含了…...

基于AIOHTTP、Websocket和Vue3一步步实现web部署平台,无延迟控制台输出,接近原生SSH连接

背景:笔者是一名Javaer,但是最近因为某些原因迷上了Python和它的Asyncio,至于什么原因?请往下看。在着迷”犯浑“的过程中,也接触到了一些高并发高性能的组件,通过简单的学习和了解,aiohttp这个…...

如何在MacOS上查看edge/chrome的扩展源码

步骤 进入管理扩展页面点击详细信息复制对应id在命令行键入 open ~/Library/Application Support/Microsoft Edge/Default/Extensions/${你刚刚复制的id} 即可打开访达中对应的更目录 注意 由于原生命令行无法直接处理空格 ,所以需要加转义符\,即:open ~/Librar…...

【xdoj-离散线上练习H】T234(C++)

解题心得: 写递归函数的时候,首先写终止条件,这有助于对整个递归函数的把握。 题目:输入集合A和B,输出A到B上的所有函数。 问题描述 给定非空数字集合A和B,求出集合A到集合B上的所有函数。 输入格式 第一行…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage)&#xff1a…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案

这个问题我看其他博主也写了&#xff0c;要么要会员、要么写的乱七八糟。这里我整理一下&#xff0c;把问题说清楚并且给出代码&#xff0c;拿去用就行&#xff0c;照着葫芦画瓢。 问题 在继承QWebEngineView后&#xff0c;重写mousePressEvent或event函数无法捕获鼠标按下事…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...