当前位置: 首页 > news >正文

洛谷题目: P2398 GCD SUM 题解 (本题较难,省选-难度)

题目传送门:

P2398 GCD SUM - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

前言:

本题涉及到 欧拉函数,素数判断,质数,筛法 ,三大知识点,相对来说还是比较难的。

本题要求我们计算     \sum_{i = 1}^{n}\sum_{j = 1}^{n}\gcd(i, j)   ,也就是对所有满足   1\leq i\leq n  和  1\leq j \leq n 

的整数对   (i,j)   ,求出它们的最大公约数并将这些最大公约数累加起来。

#使用暴力枚举思路:

        1、原理:

                最直接的方法就是通过两层嵌套循环遍历所有可能的   (i,j)   组合,对于每一对  (i,j)   计算它们的最大公约数    gcd(i,j)   ,并将结果累加到总和当中。

        代码示例(以Python语言示例):

sum = 0
for i from 1 to n:for j from 1 to n:sum = sum + gcd(i, j)
print(sum)

##复杂度分析:

        1、时间复杂度:

                O(n^{2} logn)  。因为有两层嵌套循环,循环次数为  n *n=n^{2}  ,而计算        gcd(i,j)  通常使用欧几里得算法,其时间复杂度为    O(log \: min(i,j))   ,最坏情况下为O(log n)。

        2、空间复杂度:

                O(1)   , 只使用了常数级的额外空间。

缺点:(i,j)

        当   n  较大时,  n^{2}  级别的时间复杂度会导致陈旭运行的时间超出时间的限制。

###枚举最大公约数思路:

        原理:

                我们可以换个角度来想,枚举最大公约数 d  的值,然后总计满足      gcd(i,j)=b   的整数对  (i,j)   的数量     cnt_{d}   ,最后将   d*cnt_{d}   累加到总和当中。

                设     g(d)   表示     gcd(i,j)  是  d  的倍数的整数对   (i,j)  的数量。因为  gcd(i,j)   是  d  的倍数意味着  i  和  j  都是  d  的倍数,所以在 1 到  n  的范围内 i  有      $\lfloor \frac{n}{d}\rfloor$    种选择,j  也有   $\lfloor \frac{n}{d}\rfloor$  种选择,那么   g(d)= \frac{n}{d} * \frac{n}{d}   。

                而我们要求的是     gcd(i,j)=d  的整数对数量,通过容斥,从   g(d)  中减去  gcd(i,j)   是 2d,3d,……的整数对数量,我们就可以得到     gcd(i,j)=d    的整数对数量。

 代码示例:

sum = 0
for d from 1 to n:cnt = 0for i from 1 to n/d:for j from 1 to n/d:if gcd(i, j) == 1:cnt = cnt + 1sum = sum + d * cnt
print(sum)

####复杂度分析:

        1、时间复杂度:

                O(n^{2} logn)  。虽然比暴力枚举 有一定优化,但是仍然比较高,因为内层嵌套循环计算       gcd(i,j)=1  的对数时复杂度比较高。

        2、空间复杂度:

                O(1)。

利用莫比乌斯反演优化思路:

        原理:

                相信学过数论的人都知道,莫比乌斯反演是数论中的重要工具之一,它主用于解决这类和最大公约数相关的求和问题。设    f(d)    表示  gcd(i,j)   的整数对  (i,j)  的数量,  g(d)  表示    gcd(i,j)   是  d  的倍数整数对  (i,j)  的数量,根据定义有

                                                

                我们根据莫比乌斯反演公式,   ,其中     是莫比乌斯函数。

                我们可以先预处理出莫比乌斯函数   ,然后进行枚举 d ,计算出  g(d)=\left\lfloor\frac{n}{d}\right\rfloor\times\left\lfloor\frac{n}{d}\right\rfloor  ,再根据莫比乌斯繁衍共识计算  f(d)  ,最后将   d*f(d)  累加到总和当中。

#####复杂度分析:

        1、时间复杂度:

                预处理莫比乌斯函数的时间复杂度为  O(n)  ,枚举 d 计算答案的时间复杂度为  O(nlogn)  。

        2、空间复杂度:

                O(n)  ,主要用于存储莫比乌斯函数。

利用欧拉函数优化思路:

        原理:

                欧拉函数  表示小于等于 n 且与 n 互质的正整数的个数。

                我们可以将原问题转化为与欧拉函数相关的形式。对于固定的 d ,我们可以利用欧拉函数的性质来计算满足     gcd(i,j)=d  的整数对  (i,j)  的数量。

######复杂度分析:

        1、时间复杂度:

                预处理欧拉函数的时间复杂度为   O(nloglogn)  ,枚举 d 计算答案的时间复杂度  O(n)  ,所以总的时间复杂度为  O(nloglogn)  。

        2、空间复杂度:

                O(n)  ,主要用于存储欧拉函数。

#######代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;// 预处理莫比乌斯函数
vector<int> num, p;
vector<bool> s;
void M(int n) {num.resize(n + 1);s.resize(n + 1, true);num[1] = 1;for (int i = 2; i <= n; ++i) {if (s[i]) {p.push_back(i);num[i] = -1;}for (int j = 0; j < p.size() && i * p[j] <= n; ++j) {s[i * p[j]] = false;if (i % p[j] == 0) {num[i * p[j]] = 0;break;}num[i * p[j]] = -num[i];}}
}int main() {int n;cin >> n;M(n);LL ans = 0;// 枚举 gcd 的值 dfor (int d = 1; d <= n; ++d) {LL g = 0;int m = n / d;// 计算 g(d)for (int k = 1; k <= m; ++k) {g += (LL)num[k] * (m / k) * (m / k);}ans += d * g;}cout << ans << endl;return 0;
}

  

相关文章:

洛谷题目: P2398 GCD SUM 题解 (本题较难,省选-难度)

题目传送门&#xff1a; P2398 GCD SUM - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 前言&#xff1a; 本题涉及到 欧拉函数&#xff0c;素数判断&#xff0c;质数&#xff0c;筛法 &#xff0c;三大知识点&#xff0c;相对来说还是比较难的。 本题要求我们计算 …...

kubernetes-cni 框架源码分析

深入探索 Kubernetes 网络模型和网络通信 Kubernetes 定义了一种简单、一致的网络模型&#xff0c;基于扁平网络结构的设计&#xff0c;无需将主机端口与网络端口进行映射便可以进行高效地通讯&#xff0c;也无需其他组件进行转发。该模型也使应用程序很容易从虚拟机或者主机物…...

AI Agent有哪些痛点问题

AI Agent有哪些痛点问题 目录 AI Agent有哪些痛点问题AI Agent领域有哪些知名的论文缺乏一个将智能多智能体技术和在真实环境中学习的两个适用流程结合起来的统一框架LLM的代理在量化和客观评估方面存在挑战自主代理在动态环境中学习、推理和驾驭不确定性存在挑战AI Agent领域有…...

使用Java爬虫获取京东JD.item_sku API接口数据

在电商领域&#xff0c;商品的SKU&#xff08;Stock Keeping Unit&#xff09;信息是运营和管理的关键数据。SKU信息包括商品的规格、价格、库存等&#xff0c;对于商家的库存管理、定价策略和市场分析至关重要。京东作为国内领先的电商平台&#xff0c;提供了丰富的API接口&am…...

华为云+硅基流动使用Chatbox接入DeepSeek-R1满血版671B

华为云硅基流动使用Chatbox接入DeepSeek-R1满血版671B 硅基流动 1.1 注册登录 1.2 实名认证 1.3 创建API密钥 1.4 客户端工具 OllamaChatboxCherry StudioAnythingLLM 资源包下载&#xff1a; AI聊天本地客户端 接入Chatbox客户端 点击设置 选择SiliconFloW API 粘贴1.3创…...

平方数列与立方数列求和的数学推导

先上结论&#xff1a; 平方数列求和公式为&#xff1a; S 2 ( n ) n ( n 1 ) ( 2 n 1 ) 6 S_2(n) \frac{n(n1)(2n1)}{6} S2​(n)6n(n1)(2n1)​ 立方数列求和公式为&#xff1a; S 3 ( n ) ( n ( n 1 ) 2 ) 2 S_3(n) \left( \frac{n(n1)}{2} \right)^2 S3​(n)(2n(n1)​…...

Java中的synchronized关键字与锁升级机制

在多线程编程中&#xff0c;线程同步是确保程序正确执行的关键。当多个线程同时访问共享资源时&#xff0c;如果不进行同步管理&#xff0c;可能会导致数据不一致的问题。为了避免这些问题&#xff0c;Java 提供了多种同步机制&#xff0c;其中最常见的就是 synchronized 关键字…...

告别传统校准!GNSS模拟器在计量行业的应用

随着GNSS技术的不断进步&#xff0c;各类设备广泛采用该技术实现高精度定位&#xff0c;并推动了其在众多领域的广泛应用。对于关键行业如汽车制造和基础设施&#xff0c;设备的可用性和可靠性被视为基本准则&#xff0c;GNSS作为提供“绝对位置”信息的关键传感器&#xff0c;…...

数据结构结尾

1.二叉树的分类 搜索二叉树&#xff0c;平衡二叉树&#xff0c;红黑树&#xff0c;B树&#xff0c;B树 2.Makefile文件管理 注意&#xff1a; 时间戳&#xff1a;根据时间戳&#xff0c;只编译发生修改后的文件 算法&#xff1a; 算法有如上五个要求。 算法的时间复杂度&am…...

【golang】量化开发学习(一)

均值回归策略简介 均值回归&#xff08;Mean Reversion&#xff09;假设价格会围绕均值波动&#xff0c;当价格偏离均值一定程度后&#xff0c;会回归到均值。 基本逻辑&#xff1a; 计算一段时间内的移动均值&#xff08;如 20 天均线&#xff09;。当当前价格高于均值一定比…...

AI前端开发:跨领域合作的新引擎

随着人工智能技术的飞速发展&#xff0c;AI代码生成器等工具的出现正深刻地改变着软件开发的模式。 AI前端开发的兴起&#xff0c;不仅提高了开发效率&#xff0c;更重要的是促进了跨领域合作&#xff0c;让数据科学家、UI/UX设计师和前端工程师能够更紧密地协同工作&#xff0…...

数组练习(深入理解、实践数组)

1.练习1&#xff1a;多个字符从两端移动&#xff0c;向中间汇聚 编写代码&#xff0c;演示多个字符从两端移动&#xff0c;向中间汇聚 #define _CRT_SECURE_NO_WARNINGS 1 #include<stdio.h> #include<string.h> int main() {//解题思路&#xff1a;//根据题意再…...

Bigemap Pro如何进行面裁剪

一般在处理矢量数据&#xff0c;制图过程中&#xff0c;常常会用到面文件的裁剪功能&#xff0c;那么有没有一个工具可以同时实现按照线、顶点、网格以及面来裁剪呢&#xff1f;今天给大家介绍一个宝藏工具&#xff0c;叫做Bigemap Pro&#xff0c;在这里工具里面可以实现上述面…...

acwing算法全总结-数学知识

快速幂 原题链接&#xff1a;快速幂 ac代码&#xff1a; #include<iostream> #include<algorithm> using namespace std; typedef long long LL; LL qmi(int a,int b,int p) {LL res1%p;while(b)//这里本应该分两次进行&#xff0c;不过只有一次询问{if(b&1)…...

SpringMVC学习使用

一、SpringMVC简单理解 1.1 Spring与Web环境集成 1.1.1 ApplicationContext应用上下文获取方式 应用上下文对象是通过new ClasspathXmlApplicationContext(spring配置文件) 方式获取的&#xff0c;但是每次从容器中获得Bean时都要编写new ClasspathXmlApplicationContext(sp…...

10、《文件上传与下载:MultipartFile与断点续传设计》

文件上传与下载&#xff1a;MultipartFile与断点续传设计 一、基础文件上传与MultipartFile解析 1.1 Spring MVC文件上传基础 PostMapping("/upload") public String handleFileUpload(RequestParam("file") MultipartFile file) {if (!file.isEmpty())…...

DeepSeek 本地部署(电脑安装)

1.先安装Ollama 开源框架 网址链接为:Ollama 2.点中间的下载 3.选系统 4.下载好就安装 5.输入命令ollama -v 6.点击Model 7.选如下 8.选版本 9.复杂对应命令 10.控制台粘贴下载 11.就可以问问题啦 12.配置UI界面(在扩展里面输入) 13.配置完即可打开 14.选择刚才安装的就好啦…...

DeepSeek、Kimi、文心一言、通义千问:AI 大语言模型的对比分析

在人工智能领域&#xff0c;DeepSeek、Kimi、文心一言和通义千问作为国内领先的 AI 大语言模型&#xff0c;各自展现出了独特的特点和优势。本文将从技术基础、应用场景、用户体验和价格与性价比等方面对这四个模型进行对比分析&#xff0c;帮助您更好地了解它们的特点和优势。…...

Docker compose 以及镜像使用

Docker compose 以及镜像使用 高级配置 使用 Docker Compose Docker Compose 是一个用于定义和运行多容器 Docker 应用程序的工具。以下是一个 docker-compose.yml 示例&#xff1a; version: 3 services:web:image: my-appbuild: .ports:- "8000:8000"volumes:- …...

HCIA项目实践--RIP相关原理知识面试问题总结回答

9.4 RIP 9.4.1 补充概念 什么是邻居&#xff1f; 邻居指的是在网络拓扑结构中与某一节点&#xff08;如路由器&#xff09;直接相连的其他节点。它们之间可以直接进行通信和数据交互&#xff0c;能互相交换路由信息等&#xff0c;以实现网络中的数据转发和路径选择等功能。&am…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机&#xff0c;因为在使用过程中发现 Airsim 对外部监控相机的描述模糊&#xff0c;而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置&#xff0c;最后在源码示例中找到了&#xff0c;所以感…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中&#xff0c;附加包含目录、附加库目录和附加依赖项是三个至关重要的设置&#xff0c;它们相互配合&#xff0c;确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中&#xff0c;这些概念容易让人混淆&#xff0c;但深入理解它们的作用和联…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 &#xff08;一&#xff09;引用计数法 &#xff08;二&#xff09;可达性分析算法 二、垃圾回收算法 &#xff08;一&#xff09;标记清除 &#xff08;二&#xff09;标记整理 &#xff08;三&#xff09;复制 &#xff08;四&#xff…...

【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)

LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 题目描述解题思路Java代码 题目描述 题目链接&#xff1a;LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...

「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案

在移动互联网营销竞争白热化的当下&#xff0c;推客小程序系统凭借其裂变传播、精准营销等特性&#xff0c;成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径&#xff0c;助力开发者打造具有市场竞争力的营销工具。​ 一、系统核心功能架构&…...