当前位置: 首页 > news >正文

一维前缀和与二维前缀和

前缀和(Prefix Sum)是一种用于高效计算数组区间和的预处理技术,尤其适用于需要频繁查询子数组或子矩阵和的场景。下面详细讲解一维前缀和与二维前缀和的原理、构建方法及应用。


一、一维前缀和

1. 定义
  • 前缀和数组 prefix 的每个元素 prefix[i] 表示原数组 arri 个元素的和(通常从 arr[0]arr[i-1])。
  • 例如,原数组 arr = [1, 2, 3, 4],前缀和数组为 prefix = [0, 1, 3, 6, 10]
2. 构建方法
  • 初始化 prefix[0] = 0
  • 递推公式:
    [
    \text{prefix}[i] = \text{prefix}[i-1] + \text{arr}[i-1]
    ]
  • 代码实现
    vector<int> buildPrefix(vector<int>& arr) {int n = arr.size();vector<int> prefix(n + 1, 0);for (int i = 1; i <= n; i++) {prefix[i] = prefix[i - 1] + arr[i - 1];}return prefix;
    }
    
3. 查询区间和
  • 查询区间 [L, R] 的和(左闭右闭区间):
    [
    \text{sum}(L, R) = \text{prefix}[R+1] - \text{prefix}[L]
    ]
  • 示例
    arr = [1, 2, 3, 4],求 [1, 2] 的和:
    [
    \text{sum}(1, 2) = \text{prefix}[3] - \text{prefix}[1] = 6 - 1 = 5
    ]
4. 应用场景
  • 快速计算子数组的和(时间复杂度 O(1))。
  • 解决滑动窗口问题(如和大于等于目标值的最短子数组)。

二、二维前缀和

1. 定义
  • 二维前缀和数组 prefix 的每个元素 prefix[i][j] 表示从矩阵左上角 (0,0) 到右下角 (i-1,j-1) 的子矩阵的和。
  • 例如,矩阵 matrix = [[1,2],[3,4]],前缀和数组为:
    [
    \text{prefix} = \begin{bmatrix}
    0 & 0 & 0 \
    0 & 1 & 3 \
    0 & 4 & 10 \
    \end{bmatrix}
    ]
2. 构建方法
  • 初始化 prefix[0][0] = 0
  • 递推公式:
    [
    \text{prefix}[i][j] = \text{prefix}[i-1][j] + \text{prefix}[i][j-1] - \text{prefix}[i-1][j-1] + \text{matrix}[i-1][j-1]
    ]
  • 代码实现
    vector<vector<int>> build2DPrefix(vector<vector<int>>& matrix) {int m = matrix.size();int n = matrix[0].size();vector<vector<int>> prefix(m + 1, vector<int>(n + 1, 0));for (int i = 1; i <= m; i++) {for (int j = 1; j <= n; j++) {prefix[i][j] = prefix[i-1][j] + prefix[i][j-1] - prefix[i-1][j-1] + matrix[i-1][j-1];}}return prefix;
    }
    
3. 查询子矩阵和
  • 查询子矩阵 (x1, y1)(x2, y2) 的和(左闭右闭区间):
    [
    \text{sum}(x1, y1, x2, y2) = \text{prefix}[x2+1][y2+1] - \text{prefix}[x1][y2+1] - \text{prefix}[x2+1][y1] + \text{prefix}[x1][y1]
    ]
  • 示例
    matrix = [[1,2,3],[4,5,6],[7,8,9]],求子矩阵 (1,1)(2,2) 的和:
    [
    \text{sum} = 5 + 6 + 8 + 9 = 28 \
    \text{通过前缀和计算:} \text{prefix}[3][3] - \text{prefix}[1][3] - \text{prefix}[3][1] + \text{prefix}[1][1] = 45 - 6 - 12 + 1 = 28
    ]
4. 应用场景
  • 快速计算子矩阵的和(时间复杂度 O(1))。
  • 图像处理中的区域像素和统计。
  • 动态规划中的矩阵路径问题。

三、对比总结

特性一维前缀和二维前缀和
数据结构一维数组二维数组
构建复杂度O(n)O(mn)
查询复杂度O(1)O(1)
核心公式prefix[i] = prefix[i-1] + arr[i-1]prefix[i][j] = ...(见上文)
应用问题子数组和、滑动窗口子矩阵和、图像处理、动态规划

四、经典例题

  1. 一维前缀和

    • LeetCode 303. 区域和检索 - 数组不可变
    • LeetCode 560. 和为 K 的子数组
  2. 二维前缀和

    • LeetCode 304. 二维区域和检索 - 矩阵不可变
    • LeetCode 1292. 元素和小于等于阈值的正方形的最大边长

通过掌握前缀和和二维前缀和的原理与实现,可以高效解决许多与区间和相关的算法问题。

相关文章:

一维前缀和与二维前缀和

前缀和&#xff08;Prefix Sum&#xff09;是一种用于高效计算数组区间和的预处理技术&#xff0c;尤其适用于需要频繁查询子数组或子矩阵和的场景。下面详细讲解一维前缀和与二维前缀和的原理、构建方法及应用。 一、一维前缀和 1. 定义 前缀和数组 prefix 的每个元素 prefi…...

3×2 MIMO系统和2×2 MIMO系统对比

从 SVD&#xff08;奇异值分解&#xff09;预编码 的角度分析&#xff0c;32 MIMO 系统相比 22 MIMO 系统在容量、功率分配灵活性和抗干扰能力方面具有潜在优势。以下是具体分析&#xff1a; 1. SVD预编码的基本原理 SVD 预编码是一种基于信道状态信息&#xff08;CSI&#xf…...

【MySQL — 数据库基础】深入解析 MySQL 的联合查询

1. 插入查询结果 语法 insert into table_name1 select* from table_name2 where restrictions ;注意&#xff1a;查询的结果集合&#xff0c;列数 / 类型 / 顺序 要和 insert into 后面的表相匹配&#xff1b;列的名字不要求相同&#xff1b; create table student1(id int , …...

【医院运营统计专题】3.解码医院运营统计:目标、原则与未来蓝图

医院成本核算、绩效管理、运营统计、内部控制、管理会计专题索引 一、医院运营统计的关键意义 在医疗行业持续发展与变革的大背景下,医院运营统计作为医院管理的关键组成部分,其重要性愈发凸显。从国内医院的普遍现状来看,运营统计已深度融入日常管理,为医院的有序运转提…...

Ubuntu 下 nginx-1.24.0 源码分析 - ngx_atomic_cmp_set 函数

目录 修正 执行 ./configure 命令时&#xff0c;输出&#xff1a; checking for OS Linux 6.8.0-52-generic x86_64 checking for C compiler ... found using GNU C compiler gcc version: 11.4.0 (Ubuntu 11.4.0-1ubuntu1~22.04) 所以当前环境是 x86_64 于是在 src…...

CNN-BiLSTM卷积神经网络双向长短期记忆神经网络多变量多步预测,光伏功率预测

代码地址&#xff1a;CNN-BiLSTM卷积神经网络双向长短期记忆神经网络多变量多步预测&#xff0c;光伏功率预测 CNN-BiLSTM卷积神经网络双向长短期记忆神经网络多变量多步预测 一、引言 1.1、研究背景和意义 光伏功率预测在现代电力系统中占有至关重要的地位。随着可再生能源…...

【YOLO系列】YOLOv5 NMS源码理解、更换为DIoU-NMS

代码来源&#xff1a;GitHub - ultralytics/yolov5: YOLOv5 &#x1f680; in PyTorch > ONNX > CoreML > TFLite 使用的代码是YOLOv5 6.1版本 参考笔记&#xff1a;YOLOv5改进系列(八) 更换NMS非极大抑制DIoU-NMS、CIoU-NMS、EIoU-NMS、GIoU-NMS 、SIoU-NMS、Soft-…...

Android RenderEffect对Bitmap高斯模糊(毛玻璃),Kotlin(1)

Android RenderEffect对Bitmap高斯模糊(毛玻璃)&#xff0c;Kotlin&#xff08;1&#xff09; import android.graphics.Bitmap import android.graphics.BitmapFactory import android.graphics.HardwareRenderer import android.graphics.PixelFormat import android.graphic…...

【linux学习指南】线程同步与互斥

文章目录 &#x1f4dd;线程互斥&#x1f320; 库函数strncpy&#x1f309;进程线程间的互斥相关背景概念&#x1f309;互斥量mutex &#x1f320;线程同步&#x1f309;条件变量&#x1f309;同步概念与竞态条件&#x1f309; 条件变量函数 &#x1f6a9;总结 &#x1f4dd;线…...

JavaScript函数与方法详解

目录 一、函数的定义 1. 函数声明 2. 函数表达式 3. 箭头函数 二、函数的调用 1. 调用方式 2. 参数数量的灵活性 三、arguments 对象 1. 基本概念 2. 属性 3. 应用场景 4. 转换为真数组 5. 总结 四、Rest参数 1. 基本概念 2. 特点 3. 应用场景 4. 总结 五、变…...

【论文笔记】ZeroGS:扩展Spann3R+GS+pose估计

spann3r是利用dust3r做了增量式的点云重建&#xff0c;这里zeroGS在前者的基础上&#xff0c;进行了增量式的GS重建以及进行了pose的联合优化&#xff0c;这是一篇dust3r与GS结合的具有启发意义的工作。 abstract NeRF和3DGS是重建和渲染逼真图像的流行技术。然而&#xff0c;…...

AtCoder - arc058_d Iroha Loves Strings解答与注意事项

链接&#xff1a;Iroha Loves Strings - AtCoder arc058_d - Virtual Judge 利用bitset这一数据结构&#xff0c;定义bitset类型的变量dp[i]表示第i到n个字符串能拼成的字符串长度都有哪些&#xff0c;比如00100101&#xff0c;表示能拼成的长度有0,2,5&#xff0c;&#xff0…...

企业使用统一终端管理(UEM)工具提高端点安全性

什么是统一终端管理(UEM) 统一终端管理(UEM)是一种从单个控制台管理和保护企业中所有端点的方法&#xff0c;包括智能手机、平板电脑、笔记本电脑、台式机和 IoT设备。UEM 解决方案为 IT 管理员提供了一个集中式平台&#xff0c;用于跨所有作系统和设备类型部署、配置、管理和…...

Leetcode 算法题 9 回文数

起因&#xff0c; 目的: 数学法。 % 求余数&#xff0c; 拆开组合&#xff0c;组合拆开。 这个题&#xff0c;翻来覆去&#xff0c;拆开组合&#xff0c; 组合拆开。构建的过程。 题目来源&#xff0c;9 回文数&#xff1a; https://leetcode.cn/problems/palindrome-number…...

设计模式Python版 命令模式(上)

文章目录 前言一、命令模式二、命令模式示例 前言 GOF设计模式分三大类&#xff1a; 创建型模式&#xff1a;关注对象的创建过程&#xff0c;包括单例模式、简单工厂模式、工厂方法模式、抽象工厂模式、原型模式和建造者模式。结构型模式&#xff1a;关注类和对象之间的组合&…...

C语言之循环结构:直到型循环

C语言 循环结构 直到型循环的实现 特点&#xff1a;先执行&#xff0c;后判断&#xff0c;不管条件是否满足&#xff0c;至少执行一次。典型代表&#xff1a;do…while&#xff0c;goto&#xff08;已淘汰&#xff0c;不推荐使用&#xff09; do…while 语法&#xff1a; d…...

细说STM32F407单片机RTC的备份寄存器原理及使用方法

目录 一、备份寄存器的功能 二、示例功能 三、项目设置 1、晶振、DEBUG、CodeGenerator、USART6 2、RTC 3、NVIC 4、GPIO 及KEYLED 四、软件设计 1、main.h 2、main.c 3、rtc.c 4、keyled.c、keyled.h 五、运行调试 本实例旨在介绍备份寄存器的作用。本实例继续使…...

MATLAB计算反映热需求和能源消耗的度数日指标(HDD+CDD)(全代码)

目录 度数日(Degree Days, DD)概述计算公式MATLAB计算代码调用函数1:计算单站点的 CDD参考度数日(Degree Days, DD)概述 度数日(Degree Days, DD)是用于衡量建筑、城市和地区的热需求和能源消耗模式的指标。它分为两部分: 加热度日(Heating Degree Days, HDD):当室…...

J6 X8B/X3C切换HDR各帧图像

1、OV手册上的切换命令 寄存器为Ox5074 各帧切换&#xff1a; 2、地平线control tool实现切换命令 默认HDR模式出图&#xff1a; HCG出图&#xff1a; LCG出图 SPD出图 VS出图...

09-轮转数组

给定一个整数数组 nums&#xff0c;将数组中的元素向右轮转 k 个位置&#xff0c;其中 k 是非负数。 方法一&#xff1a;使用额外数组 function rotate(nums: number[], k: number): void {const n nums.length;k k % n; // 处理 k 大于数组长度的情况const newNums new A…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...