【leetcode】关于循环数组的深入分析
原题:https://leetcode.cn/problems/rotate-array/description/
给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。
示例 1:
输入: nums = [1,2,3,4,5,6,7], k = 3
输出: [5,6,7,1,2,3,4]
解释:
向右轮转 1 步: [7,1,2,3,4,5,6]
向右轮转 2 步: [6,7,1,2,3,4,5]
向右轮转 3 步: [5,6,7,1,2,3,4]
示例 2:
输入:nums = [-1,-100,3,99], k = 2
输出:[3,99,-1,-100]
解释:
向右轮转 1 步: [99,-1,-100,3]
向右轮转 2 步: [3,99,-1,-100]
开始的思路是通过mod运算完成循环的效果,从第一个位置元素起逐渐以步长k往下一个元素循环递推赋值,直到回到第一个位置元素。
from typing import Listclass Solution:def rotate(self, nums: List[int], k: int) -> None:"""Do not return anything, modify nums in-place instead."""arr_len = len(nums)curr_idx, curr_num = 0, nums[0]while True:next_idx = (curr_idx + k) % arr_lenif next_idx == 0:nums[next_idx] = curr_numbreaknums[next_idx], curr_num = curr_num, nums[next_idx]curr_idx = next_idxprint(nums)if __name__ == '__main__':s = Solution()s.rotate(nums=[1, 2, 3, 4, 5, 6, 7], k=3)s.rotate(nums=[-1, -100, 3, 99], k=2)# [5, 6, 7, 1, 2, 3, 4]
# [3, -100, -1, 99]
可以看到第一个输出正确,第二个输出错误。
原因
上面方式只适用于数组长度n和步长k互质的情况。主要可以通过下面两点证明来理解:
1.循环数组中,从任意位置经过有限步步长移动后,一定会再次回到起始位置。
假设起始位置下标
i,其实就是需要证明(i + mk) mod n = i,也就是证明mk mod n = 0,m是至少需要移动的次数。
分两种情况:
1)n、k互质,此时最小的移动次数显然等于n,gcd(n, k)=1。
2)n、k不互质,设最大公约数gcd(n, k)=d, n ′ = n d n'=\frac{n}{d} n′=dn, k ′ = k d k'=\frac{k}{d} k′=dk,其中 n ′ 、 k ′ n'、k' n′、k′互质。此时上面等式等价于 m d k ′ m o d d n ′ = 0 mdk'\mod dn' = 0 mdk′moddn′=0,化简为=> m k ′ m o d n ′ = 0 mk' \mod n'=0 mk′modn′=0,因此当m= n ′ n' n′的时候成立。
综上,得证。
2.循环数组中环的数量等于数组长度n和步长k的最大公约数。
1中的证明其实说明从每个下标起始,m次移动后又会再次回到这个下标,这个过程其实构成了一个环,移动的次数就是环中的元素数量。并且因为是等距移动,所以环和环之间的元素也不会冲突。
同样分为n、k互质和不互质两种情况:
1)互质:根据1,需要移动n次,数组长度n,所以环的数量1。
2)不互质:同样根据1,需要移动 n ′ n' n′次,所以每个环中的元素数量也是 n ′ n' n′,所以环的数量= n n ′ \frac{n}{n'} n′n=d。
正确答案
求出环的数量,遍历环的起始下标。
from typing import Listclass Solution:def rotate(self, nums: List[int], k: int) -> None:"""Do not return anything, modify nums in-place instead."""import matharr_len = len(nums)gcd_ans = math.gcd(arr_len, k)for idx in range(gcd_ans): # 每个环的起始下标curr_idx, curr_num = idx, nums[idx]while True:next_idx = (curr_idx + k) % arr_lenif next_idx == idx:nums[next_idx] = curr_numbreaknums[next_idx], curr_num = curr_num, nums[next_idx]curr_idx = next_idxprint(nums)if __name__ == '__main__':s = Solution()s.rotate(nums=[1, 2, 3, 4, 5, 6, 7], k=3)s.rotate(nums=[-1, -100, 3, 99], k=2)# [5, 6, 7, 1, 2, 3, 4]
# [3, 99, -1, -100]
相关文章:
【leetcode】关于循环数组的深入分析
原题:https://leetcode.cn/problems/rotate-array/description/ 给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。 示例 1: 输入: nums [1,2,3,4,5,6,7], k 3 输出: [5,6,7,1,2,3,4] 解释: 向右轮转 1 步: [7,1…...
DeepSeek 指导手册(入门到精通)
第⼀章:准备篇(三分钟上手)1.1 三分钟创建你的 AI 伙伴1.2 认识你的 AI 控制台 第二章:基础对话篇(像交朋友⼀样学交流)2.1 有效提问的五个黄金法则2.2 新手必学魔法指令 第三章:效率飞跃篇&…...
【力扣题解】【76. 最小覆盖子串】容易理解版
76. 最小覆盖子串 总结和复盘 这是时隔1年4个月之后,再次写的题解,比第一次要清晰很多。 我刚开始,就是用方法一做的,提交之后报超出内存限制; 对方法一进行优化,得到方法二,提交之后就AC了。…...
Android10 音频参数导出合并
A10 设备录音时底噪过大,让音频同事校准了下,然后把校准好的参数需要导出来,集成到项目中,然后出包,导出方式在此记录 设备安装debug系统版本调试好后, adb root adb remount adb shell 进入设备目录 导…...
在 Windows 系统中如何快速进入安全模式的两种方法
在使用电脑的过程中,有时我们可能会遇到一些需要进入“安全模式”来解决的问题。安全模式是一种特殊的启动选项,它以最小化配置启动操作系统,仅加载最基本的驱动程序和服务,从而帮助用户诊断和修复系统问题。本文中简鹿办公将详细…...
计算机网络(1)基础篇
目录 1.TCP/IP 网络模型 2.键入网址--->网页显示 2.1 生成HTTP数据包 2.2 DNS服务器进行域名与IP转换 2.3 建立TCP连接 2.4 生成IP头部和MAC头部 2.5 网卡、交换机、路由器 3 Linux系统收发网络包 1.TCP/IP 网络模型 首先,为什么要有 TCP/IP 网络模型&a…...
自然语言处理NLP入门 -- 第四节文本分类
目标 本章的目标是帮助你理解文本分类的基本概念,并通过具体示例学习如何使用 scikit-learn 训练文本分类模型,以及如何利用 OpenAI API 进行文本分类。 5.1 什么是文本分类? 文本分类(Text Classification)是自然语…...
【redis】数据类型之bitmaps
Redis的Bitmaps是一种基于字符串的数据结构,用于处理位级别的操作。虽然Bitmaps在Redis中并不是一种独立的数据类型,而是基于字符串实现的,但它们提供了高效的位操作功能,适用于需要处理大量布尔值或二进制数据的场景。 基本概念…...
计算机网络-MPLS转发原理
在上一篇关于 MPLS 基础的文章中,我们了解了 MPLS 的基本概念、术语以及它在网络中的重要性。今天,我们将深入探讨 MPLS 转发的原理与流程,帮助大家更好地理解 MPLS 是如何在实际网络中工作的。 一、MPLS 转发概述 MPLS 转发的本质是将数据…...
5. 【.NET 8 实战--孢子记账--从单体到微服务--转向微服务】--微服务基础工具与技术--Nacos
一、什么是Nacos Nacos 是阿里巴巴开源的一款云原生应用基础设施,它旨在简化微服务架构中服务治理和配置管理的复杂性。通过 Nacos,服务在启动时可以自动注册,而其他服务则可以通过名称来查找并访问这些注册好的实例。同时,Nacos…...
【每日关注】科技圈重要动态
时代新动态 2025 年 2 月 12 日科技圈重要动态总结全球 AI 治理新进展巴黎 AI 宣言签署,美英缺席 科技巨头合作与竞争苹果联姻阿里开发中国版AI功能DeepSeek生态持续扩展OpenAI拒绝马斯克收购,矛盾公开化 汽车行业动态小米汽车销量跃居新势力第二比亚迪智…...
【算法】用C++实现A*算法
A*算法的背景与原理 A*(A-Star)算法是一种广泛应用于路径规划和图搜索问题中的启发式搜索算法。它结合了Dijkstra算法的广度优先搜索和贪心最佳优先搜索的优点,通过引入启发式函数来估计从当前节点到目标节点的成本,从而有效地减少搜索空间。A*算法的核心思想是使用一个评…...
细胞计数专题 | LUNA-FX7™新自动对焦算法提高极低细胞浓度下的细胞计数准确性
现代细胞计数仪采用自动化方法,在特定浓度范围内进行细胞计数。其上限受限于在高浓度条件下准确区分细胞边界的能力,而相机视野等因素则决定了下限。在图像中仅包含少量可识别细胞或特征的情况下,自动对焦可能会失效,从而影响细胞…...
记一次Self XSS+CSRF组合利用
视频教程在我主页简介或专栏里 (不懂都可以来问我 专栏找我哦) 目录: 确认 XSS 漏洞 确认 CSRF 漏洞 这个漏洞是我在应用程序的订阅表单中发现的一个 XSS 漏洞,只能通过 POST 请求进行利用。通常情况下,基于 POST 的…...
JVM 类加载子系统在干什么?
JVM 类加载子系统是什么? 类加载子系统(Class Loader Subsystem)是 JVM 负责 加载、链接和初始化 .class 文件的组件。它的主要作用是将字节码文件加载进 JVM 并准备执行。 类加载器(ClassLoader)是 字节码的搬运工&…...
Golang轻松实现消息模板变量替换:text/template
text/template 是 Go 语言标准库中的一个包,用于生成文本输出。它通过解析模板并根据给定的数据执行模板来生成最终的文本。text/template 提供了强大的模板引擎,支持条件判断、循环、变量替换等功能。 基本概念 模板:模板是一个文本文件或…...
DeepSeek模型R1服务器繁忙,怎么解决?
在当今科技飞速发展的时代,人工智能领域不断涌现出令人瞩目的创新成果,其中DeepSeek模型无疑成为了众多关注焦点。它凭借着先进的技术和卓越的性能,在行业内掀起了一股热潮,吸引了无数目光。然而,如同许多前沿技术在发…...
《探秘Windows 10驱动开发:从入门到实战》
《探秘Windows 10驱动开发:从入门到实战》 为什么要在 Windows 10 编写驱动程序 在当今数字化时代,计算机已成为人们生活和工作中不可或缺的工具 ,而 Windows 10 作为一款广泛使用的操作系统,其生态系统的丰富性和复杂性不言而喻。在这个庞大的体系中,驱动程序扮演着举足…...
Golang的容器化部署流程
# Golang的容器化部署流程 什么是容器化部署 容器化部署是将应用程序、运行环境及其依赖项打包在一起,以便可以在任何环境中快速、一致地运行的技术。它提供了更高效的资源利用、更便捷的部署和更稳定的环境。 的容器化支持 天生支持跨平台编译,使得将Go…...
计算机网络,大白话
好嘞,咱就从头到尾,给你好好说道说道计算机网络里这些“门门道道”的概念: 1. 网络(Network) 啥是网络? 你可以把网络想象成一个“大Party”,大家(设备)聚在一起&#…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...
免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...
GO协程(Goroutine)问题总结
在使用Go语言来编写代码时,遇到的一些问题总结一下 [参考文档]:https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现: 今天在看到这个教程的时候,在自己的电…...
为什么要创建 Vue 实例
核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...
