基于opencv的HOG+角点匹配教程
1. 引言
在计算机视觉任务中,特征匹配是目标识别、图像配准和物体跟踪的重要组成部分。本文介绍如何使用 HOG(Histogram of Oriented Gradients,方向梯度直方图) 和 角点检测(Corner Detection) 进行特征匹配。
1.1 为什么选择HOG和角点?
- HOG特征 适用于物体检测,能够提取局部梯度信息,具有旋转和光照不变性。
- 角点检测 例如Harris角点、Shi-Tomasi等方法,能够找到图像中结构突变的关键点,提高匹配精度。
- 结合HOG与角点检测,可以同时利用纹理信息和几何信息,提高匹配的鲁棒性。
2. HOG特征提取
2.1 HOG的基本原理
HOG的基本思想是计算局部区域内像素梯度的方向分布,并构建特征向量。
HOG计算步骤:
- 计算梯度:使用Sobel算子计算水平梯度 ( G_x ) 和垂直梯度 ( G_y )。
- 计算梯度幅值和方向:
[ M = \sqrt{G_x^2 + G_y^2} ]
[ \theta = \tan^{-1}(G_y / G_x) ] - 划分细胞(Cells):将图像划分为小的单元格(例如 8×8)。
- 计算直方图:在每个Cell中统计不同方向的梯度强度。
- 块归一化(Block Normalization):对多个Cells组成的Block进行归一化,以增强光照变化的鲁棒性。
- 特征向量拼接:将所有Block的特征向量拼接成最终的HOG描述子。
2.2 代码示例
使用OpenCV和hog库提取HOG特征。
import cv2
import numpy as np
from skimage.feature import hogdef compute_hog(image):gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)features, hog_image = hog(gray, orientations=9, pixels_per_cell=(8, 8),cells_per_block=(2, 2), visualize=True, feature_vector=True)return features, hog_imageimage = cv2.imread('image.jpg')
hog_features, hog_vis = compute_hog(image)
cv2.imshow('HOG Features', hog_vis)
cv2.waitKey(0)
cv2.destroyAllWindows()
3. 角点检测
3.1 角点检测原理
角点是图像中具有显著变化的点,在特征匹配中至关重要。常用角点检测方法:
- Harris角点检测:基于自相关矩阵,计算图像窗口内的梯度变化。
- Shi-Tomasi角点检测:改进Harris方法,选择响应更强的角点。
- FAST角点检测:基于快速关键点检测,适用于实时应用。
3.2 代码示例
使用OpenCV实现Harris角点检测。
import cv2
import numpy as npdef detect_corners(image):gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)gray = np.float32(gray)corners = cv2.cornerHarris(gray, blockSize=2, ksize=3, k=0.04)image[corners > 0.01 * corners.max()] = [0, 0, 255] # 标记角点return imageimage = cv2.imread('image.jpg')
detected_image = detect_corners(image)
cv2.imshow('Corners', detected_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
4. HOG+角点匹配
4.1 结合HOG和角点检测
HOG提取局部特征,而角点提供关键匹配点,可以使用 最近邻搜索(Nearest Neighbor Search, NNS) 或 FLANN(Fast Library for Approximate Nearest Neighbors) 进行匹配。
4.2 代码示例
import cv2
import numpy as np
from skimage.feature import hog
from scipy.spatial import distancedef extract_hog_at_corners(image, corners):gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)features = []for corner in np.argwhere(corners > 0.01 * corners.max()):x, y = corner[1], corner[0]patch = gray[max(y-8, 0):min(y+8, gray.shape[0]), max(x-8, 0):min(x+8, gray.shape[1])]if patch.shape[0] == 16 and patch.shape[1] == 16:hog_feature = hog(patch, orientations=9, pixels_per_cell=(8, 8), cells_per_block=(2, 2), feature_vector=True)features.append((x, y, hog_feature))return featuresdef match_features(features1, features2):matches = []for (x1, y1, f1) in features1:best_match = min(features2, key=lambda f2: distance.euclidean(f1, f2[2]))x2, y2, _ = best_matchmatches.append(((x1, y1), (x2, y2)))return matches# 读取两张待匹配图像
image1 = cv2.imread('image1.jpg')
image2 = cv2.imread('image2.jpg')# 角点检测
corners1 = cv2.cornerHarris(cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY).astype(np.float32), 2, 3, 0.04)
corners2 = cv2.cornerHarris(cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY).astype(np.float32), 2, 3, 0.04)# 提取HOG特征
features1 = extract_hog_at_corners(image1, corners1)
features2 = extract_hog_at_corners(image2, corners2)# 进行匹配
matches = match_features(features1, features2)# 可视化匹配结果
for (pt1, pt2) in matches:cv2.line(image1, pt1, pt2, (0, 255, 0), 1)cv2.imshow('Matched Features', image1)
cv2.waitKey(0)
cv2.destroyAllWindows()
5. 优化策略
- 使用FLANN加速匹配
- 结合RANSAC剔除错误匹配
- 多尺度金字塔提高匹配稳定性
6. 结论
HOG结合角点检测能够在图像匹配任务中提供高鲁棒性的特征描述。适用于目标识别、拼接和物体跟踪等应用。
参考资料
- Dalal & Triggs, “Histograms of Oriented Gradients for Human Detection”, CVPR 2005.
- OpenCV 官方文档 https://docs.opencv.org
相关文章:
基于opencv的HOG+角点匹配教程
1. 引言 在计算机视觉任务中,特征匹配是目标识别、图像配准和物体跟踪的重要组成部分。本文介绍如何使用 HOG(Histogram of Oriented Gradients,方向梯度直方图) 和 角点检测(Corner Detection) 进行特征匹…...
Linux线程概念与线程操作
Linux线程概念与线程操作 线程概念 前面提到进程程序代码和数据进程结构体,在线程部分就需要进一步更新之前的认识 进程实际上承担分配系统资源的基本实体,而线程是进程中的一个执行分支,是操作系统调度的基本单位 此处需要注意࿰…...
AI软件栈:LLVM分析(五)
数据流分析是编译优化、代码生成的关键理论。其数学基础是离散数学中的半格(Semi-Lattice)和格。半格与格不仅是编译优化和代码生成的重要理论基础,也是程序分析、验证及自动化测试的系统理论基础。 文章目录 格、半格与不动点格、半格与不动点 半格是指针对二元组 < S …...
Git指南-从入门到精通
代码提交和同步命令 流程图如下: 第零步: 工作区与仓库保持一致第一步: 文件增删改,变为已修改状态第二步: git add ,变为已暂存状态 bash $ git status $ git add --all # 当前项目下的所有更改 $ git add . # 当前目录下的所有更改 $ g…...
Linux 文件系统挂载
系列文章目录 Linux内核学习 Linux 知识(1) Linux 知识(2) WSL Ubuntu QEMU 虚拟机 Linux 调试视频 PCIe 与 USB 的补充知识 vscode 使用说明 树莓派 4B 指南 设备驱动畅想 Linux内核子系统 Linux 文件系统挂载 文章目录 系列文章…...
Qt QSpinBox 总结
Qt5 QSpinBox 总结 1. 基本特性 用途:用于输入和调整整数值,支持通过上下箭头、键盘输入或编程方式修改值。 默认范围:0 到 99,可通过 setRange(min, max) 自定义。 步长控制:setSingleStep(step) 设置单步增减值&a…...
【OJ项目】深入剖析题目接口控制器:功能、实现与应用
《深入剖析题目接口控制器:功能、实现与应用》 一、引言 在在线编程平台或竞赛系统中,题目管理和提交是核心功能之一。QuestionController 类作为控制器层,承担着处理与题目相关的各种请求的重要职责,包括题目的增删改查、题目提…...
周考考题(学习自用)
1.查询student表中name叫张某的信息 select * from student where name张某; 2.写出char和varchar类型的区别 1)char存储固定长度的字符串,varchar存储可变长度的字符串(在实际长度的字符串上加上一个字节用于存储字符串长度)&a…...
【matlab】大小键盘对应的Kbname
matlab中可以通过Kbname来识别键盘上的键。在写范式的时候,遇到一个问题,我想用大键盘上排成一行的数字按键评分,比如 Kbname(1) 表示键盘上的数字1,但是这种写法只能识别小键盘上的数字,无法达到我的目的,…...
LabVIEW与小众设备集成
在LabVIEW开发中,当面临控制如布鲁克OPUS红外光谱仪这类小众专业设备的需求,而厂家虽然提供了配套软件,但由于系统中还需要控制其他设备且不能使用厂商的软件时,必须依赖特定方法通过LabVIEW实现设备的控制。开发过程中࿰…...
Android 系统Service流程
主要用到的源码文件 /frameworks/base/core/java/android/app/ContextImpl.java 和ams通信。 /frameworks/base/services/core/java/com/android/server/am/ActivityManagerService.java 初始化Service,.管理服务 ActiveServices对象mServices /frameworks/base/services/core/…...
Gartner预测2025年网络安全正在进入AI动荡时期:软件供应链和基础设施技术堆栈中毒将占针对企业使用的人工智能恶意攻击的 70% 以上
Gartner 预测,网络安全正在进入 AI 动荡时期。安全和风险管理领导者必须根据早期生成式 AI 部署的失败以及 AI 代理清洗来评估即将到来的 AI 进展。 主要发现 随着各大企业开展大量人工智能采用和开发项目,应用安全弱点的暴露程度不断提高,包…...
华为最新OD机试真题-最长子字符串的长度(一)-Python-OD统一考试(E卷)
最新华为OD机试考点合集:华为OD机试2024年真题题库(E卷+D卷+C卷)_华为od机试题库-CSDN博客 每一题都含有详细的解题思路和代码注释,精编c++、JAVA、Python三种语言解法。帮助每一位考生轻松、高效刷题。订阅后永久可看,发现新题及时跟新。 题目描述: 给你一个字符串…...
HAL库框架学习总结
概述:HAL库为各种外设基本都配了三套 API,查询,中断和 DMA。 一、HAL库为外设初始化提供了一套框架,这里以串口为例进行说明,调用函数 HAL_UART_Init初始化串口,此函数就会调用 HAL_UART_MspInit࿰…...
基于Spring Integration的ESB与Kettle结合实现实时数据处理技术
一、方案概述 在当今数字化时代,企业面临着海量数据的实时处理与传输挑战。ESB(企业服务总线)作为系统集成的核心组件,承担着不同协议数据的接入与转换任务,而Kettle作为一款功能强大的ETL(Extract, Transform, Load)工具,在数据抽取、转换与加载方面表现出色。将ESB与…...
qt QOpenGLContext详解
1. 概述 QOpenGLContext 是 Qt 提供的一个类,用于管理 OpenGL 上下文。它封装了 OpenGL 上下文的创建、配置和管理功能,使得开发者可以在 Qt 应用程序中以平台无关的方式使用 OpenGL。通过 QOpenGLContext,可以轻松地创建和管理 OpenGL 上下…...
探索顶级汽车软件解决方案:驱动行业变革的关键力量
在本文中,将一同探索当今塑造汽车行业的最具影响力的软件解决方案。从设计到制造,软件正彻底改变车辆的制造与维护方式。让我们深入了解这个充满活力领域中的关键技术。 设计软件:创新车型的孕育摇篮 车辆设计软件对于创造创新型汽车模型至…...
Deepseek R1模型本地化部署+API接口调用详细教程:释放AI生产力
文章目录 前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装ollama2部署DeepSeek R1模型删除已存在模型,以7b模型为例 三、DeepSeek API接口调用Cline配置 前言 随着最近人工智能 DeepSeek 的爆火,越来越多的技术大佬们开始关注如…...
DeepSeek 概述与本地化部署【详细流程】
目录 一、引言 1.1 背景介绍 1.2 本地化部署的优势 二、deepseek概述 2.1 功能特点 2.2 核心优势 三、本地部署流程 3.1 版本选择 3.2 部署过程 3.2.1 下载Ollama 3.2.2 安装Ollama 3.2.3 选择 r1 模型 3.2.4 选择版本 3.2.5 本地运行deepseek模型 3.3.6 查看…...
FFmpeg Video options
FFmpeg视频相关选项 1. -vframes number (output) 设置输出视频帧数 示例: ffmpeg -i input.mp4 -vframes 90 output.mp4 表示输出90帧视频 2. -r[:stream_specifier] fps (input/output,per-stream) 设置帧率(rate) 示例: ffmpeg -i input.mp4…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
dedecms 织梦自定义表单留言增加ajax验证码功能
增加ajax功能模块,用户不点击提交按钮,只要输入框失去焦点,就会提前提示验证码是否正确。 一,模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...
Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...
Caliper 负载(Workload)详细解析
Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...
