Qwen2-VL 的重大省级,Qwen 发布新旗舰视觉语言模型 Qwen2.5-VL

Qwen2.5-VL 是 Qwen 的新旗舰视觉语言模型,也是上一代 Qwen2-VL 的重大飞跃。
Qwen2.5-VL主要特点
-
视觉理解事物:Qwen2.5-VL不仅能够熟练识别花、鸟、鱼、昆虫等常见物体,而且还能够分析图像中的文本、图表、图标、图形和布局。
-
代理性:Qwen2.5-VL直接扮演视觉代理的角色,具有推理和动态指挥工具的功能,可用于电脑和手机。
-
理解长视频并捕捉事件:Qwen2.5-VL 可以理解超过 1 小时的视频,这次它还具有通过精确定位相关视频片段来捕捉事件的新功能。
-
能够进行不同格式的视觉定位:Qwen2.5-VL 可以通过生成边界框或点来准确定位图像中的对象,并且可以为坐标和属性提供稳定的 JSON 输出。
-
生成结构化输出:对于发票、表格、表格等扫描件数据,Qwen2.5-VL 支持其内容的结构化输出,有利于金融、商业等领域的用途。

相关链接
-
主页:https://chat.qwenlm.ai/
-
GitHub:https://github.com/QwenLM/Qwen2-VL
-
Huggingface:https://huggingface.co/collections/Qwen/qwen25-vl-6795ffac22b334a837c0f9a5
-
ModelScope: https://modelscope.cn/collections/Qwen25-VL-58fbb5d31f1d47
表现
我们用 SOTA 模型以及类似模型大小的最佳模型来评估我们的模型。就旗舰模型 Qwen2.5-VL-72B-Instruct 而言,它在一系列涵盖领域和任务的基准测试中取得了有竞争力的表现,包括大学水平的问题、数学、文档理解、一般问答、数学、视频理解和视觉代理。值得注意的是,Qwen2.5-VL 在理解文档和图表方面取得了显著的优势,并且它能够充当视觉代理而无需针对特定任务进行微调。

在较小的模型方面,Qwen2.5-VL-7B-Instruct 在多项任务上的表现优于 GPT-4o-mini,而作为边缘 AI 解决方案的 Qwen2.5-VL-3B 甚至优于我们上一版本 Qwen2-VL 的 7B 模型。


模型功能
1. 全球范围的图像识别
Qwen2.5-VL通用图像识别能力大幅提升,图像类别扩展至超大量,不仅包括植物、动物、名山大川地标,还包括影视IP以及种类丰富的商品。 - 示例:景点识别 这些景点是什么?请给出它们的中文和英文名称。

- Qwen2.5-VL
```
这些景点是:左上:吉萨大金字塔(埃及的吉萨大金字塔)
右上:中国的长城
左下:自由女神像(美国的自由女神像)
右下:中国的秦始皇兵马俑
```
2. 精确的物体接地
Qwen2.5-VL 利用边界框和基于点的表示进行定位,实现分层定位和标准化 JSON 输出。这种增强的定位能力为视觉推理奠定了基础。
-
检测图像中的所有摩托车手并以坐标形式返回其位置。输出格式应为 {“bbox_2d”: [x1, y1, x2, y2], “label”: “motorcyclist”, “sub_label”: “wearing helmat” # or “not wearing helmat”}。

[{"bbox_2d": [341, 258, 397, 360], "label": "motorcyclist", "sub_label": "not wearing helmat "},{"bbox_2d": [212, 332, 274, 448], "label": "motorcyclist", "sub_label": "not wearing helmat "},{"bbox_2d": [66, 124, 112, 198], "label": "motorcyclist", "sub_label": "not wearing helmat "},{"bbox_2d": [5, 235, 63, 320], "label": "motorcyclist", "sub_label": "wearing helmat "} ]
3.增强文本识别和理解
Qwen2.5-VL将OCR识别能力提升到全新高度,多场景、多语言、多方向的文字识别和文本本地化性能增强,信息提取能力大幅提升,满足资质审核、金融业务等领域日益提升的数字化、智能化需求。
-
读取图片中所有文字,按行输出。

-
Qwen2.5-VL回答:平安喜乐 八方来财 顺风顺 水顺财神 暴富 大吉诸事皆顺 福时来运转 发财如意 有钱有势 有前程 好运来
4. 强大的文档解析功能
Qwen2.5-VL 设计了一种独特的文档解析格式,称为 QwenVL HTML 格式,该格式基于 HTML 提取布局信息。QwenVL HTML 可以在各种场景中进行文档解析,例如杂志、研究论文、网页,甚至移动端截图。

<html>
<body>
<h1 data-bbox="879 283 1605 348">Qwen2.5 Technical Report</h1>
<p data-bbox="1124 406 1360 456"></p>
<address class="author"><p>Qwen Team</p></address>
<div class="image" data-bbox="778 491 850 541"><img data-bbox="778 491 850 541"/></div>
<p data-bbox="885 491 1460 541">https://huggingface.co/Qwen</p>
<div class="image" data-bbox="778 541 850 589"><img data-bbox="778 541 850 589"/></div>
<p data-bbox="885 541 1708 589">https://modelscope.cn/organization/qwen</p>
<div class="image" data-bbox="792 589 850 639"><img data-bbox="792 589 850 639"/></div>
<p data-bbox="885 589 1584 639">https://github.com/QwenLM/Qwen2.5</p>
<h2 data-bbox="1143 681 1344 733">Abstract</h2>
<p data-bbox="434 785 2050 1252">In this report, we introduce Qwen2.5, a comprehensive series of large language models (LLMs) designed to meet diverse needs. Compared to previous iterations, Qwen 2.5 has been significantly improved during both the pre-training and post-training stages. In terms of pre-training, we have scaled the high-quality pre-training datasets from the previous 7 trillion tokens to 18 trillion tokens. This provides a strong foundation for common sense, expert knowledge, and reasoning capabilities. In terms of post-training, we implement intricate supervised finetuning with over 1 million samples, as well as multistage reinforcement learning, including offline learning DPO and online learning GRPO. Post-training techniques significantly enhance human preference, and notably improve long text generation, structural data analysis, and instruction following.</p>
<p data-bbox="434 1262 2050 1587">To handle diverse and varied use cases effectively, we present Qwen2.5 LLM series in rich configurations. The open-weight offerings include base models and instruction-tuned models in sizes of $0.5 \mathrm{~B}, 1.5 \mathrm{~B}, 3 \mathrm{~B}, 7 \mathrm{~B}, 14 \mathrm{~B}, 32 \mathrm{~B}$, and $72 \mathrm{~B}$ parameters. Quantized versions of the instruction-tuned models are also provided. Over 100 models can be accessed from Hugging Face Hub, ModelScope, and Kaggle. In addition, for hosted solutions, the proprietary models currently include two mixture-of-experts (MoE) variants: Qwen2.5-Turbo and Qwen2.5-Plus, both available from Alibaba Cloud Model Studio.</p>
<p data-bbox="434 1587 2050 2052">Qwen2.5 has demonstrated top-tier performance on a wide range of benchmarks evaluating language understanding, reasoning, mathematics, coding, human preference alignment, etc. Specifically, the open-weight flagship Qwen2.5-72B-Instruct outperforms a number of open and proprietary models and demonstrates competitive performance to the state-of-the-art open-weight model, Llama-3-405B-Instruct, which is around 5 times larger. Qwen2.5-Turbo and Qwen2.5-Plus offer superior cost-effectiveness while performing competitively against GPT-4o-mini and GPT-4o respectively. Additionally, as the foundation, Qwen2.5 models have been instrumental in training specialized models such as Qwen2.5-Math (Yang et al., 2024b), Qwen2.5-Coder (Hui et al., 2024), QwQ (Qwen Team, 2024d), and multimodal models.</p>
<div class="image" data-bbox="408 2275 2086 2800"><img data-bbox="408 2275 2086 2800"/></div>
<p data-bbox="289 2864 2202 3058">Figure 1: In the iterative development of the Qwen series, data scaling has played a crucial role. Qwen 2.5, which leverages 18 trillion tokens for pre-training, has demonstrated the most advanced capabilities within the Qwen series, especially in terms of domain expertise, underscoring the importance of scale together with mixture in enhancing the model’s capabilities.</p>
</body>
</html>
5. 增强视频理解能力
Qwen2.5-VL 的视频理解能力全面升级,在时序处理方面,我们引入了动态帧率(FPS)训练和绝对时间编码技术,使得模型不仅能够支持小时级超长视频理解,还能实现秒级事件定位,能够精准理解数小时级长视频内容,搜索视频中的特定事件,总结不同时间段的关键点,帮助用户快速高效地提取视频中蕴含的关键信息。
模型更新
Qwen2.5-VL相较于Qwen2-VL,增强了模型对时间和空间尺度的感知,并进一步简化了网络结构,提高模型效率。
时间和图像大小的感知
在空间维度上,Qwen2.5-VL不仅能将不同大小的图片动态转换为不同长度的token,还直接用图片的实际尺寸尺度来表示检测框、点等坐标,而无需进行传统的坐标归一化,让模型能够直接学习到图片的尺度。在时间维度上,引入了动态FPS(Frames Per Second)训练和绝对时间编码,将mRoPE的id直接与时间的快慢对齐,让模型能够通过时间维度id的间隔来学习到时间的节奏。

更简洁高效的视觉编码器
视觉编码器在多模态大型模型中起着至关重要的作用。我们从头开始训练了一个原生动态分辨率 ViT,包括 CLIP、视觉语言模型对齐和端到端训练阶段。为了解决多模态大型模型训练和测试阶段 ViT 负载不平衡的问题,我们引入了窗口注意,以有效减少 ViT 端的计算负载。在我们的 ViT 设置中,只有四层是全注意层,其余层使用窗口注意。最大窗口大小为 8x8,小于 8x8 的区域不需要填充;相反,它们保留其原始比例,确保模型保持原生分辨率。此外,为了简化整体网络结构,我们通过采用 RMNSorm 和 SwiGLU 结构使 ViT 架构与 LLM 更加一致。
下一步
在不久的将来,我们将进一步增强模型的解决问题和推理能力,同时融入更多模态。这将使模型更加智能,并使我们朝着能够处理多种类型输入和任务的集成式全能模型迈进。
相关文章:
Qwen2-VL 的重大省级,Qwen 发布新旗舰视觉语言模型 Qwen2.5-VL
Qwen2.5-VL 是 Qwen 的新旗舰视觉语言模型,也是上一代 Qwen2-VL 的重大飞跃。 Qwen2.5-VL主要特点 视觉理解事物:Qwen2.5-VL不仅能够熟练识别花、鸟、鱼、昆虫等常见物体,而且还能够分析图像中的文本、图表、图标、图形和布局。 代理性&…...
js考核第三题
题三:随机点名 要求: 分为上下两个部分,上方为显示区域,下方为控制区域。显示区域显示五十位群成员的学号和姓名,控制区域由开始和结束两个按钮 组成。点击开始按钮,显示区域里的内容开始滚动,…...
LabVIEW袜品压力测试系统
开发了一种基于LabVIEW开发的袜品压力测试系统。该系统利用LabVIEW并结合灵敏的传感器和高精度的处理模块,实现了对袜品压力的精确测量和分析。系统不同于传统的服装压力测试方法,为研究和评价袜子的舒适性提供了新的测试手段。 项目背景 该系统的…...
jsp页面跳转失败
今天解决一下jsp页面跳转失败的问题 在JavaWeb的学习过程中,编写了这样一段代码: <html> <body> <h2>Hello World!</h2><%--这里提交的路径,需要寻找到项目的路径--%> <%--${pageContext.request.context…...
1.推荐算法基本概念
推荐算法是一个非常重要且广泛应用的领域,特别是在电子商务、社交媒体、内容推荐等领域。第一课我们将介绍推荐算法的基本概念和分类,并简单讲解两种常见的推荐算法:协同过滤和基于内容的推荐。 推荐算法的基本概念 推荐系统的目标是根据用…...
Java 大视界 -- 大数据伦理与法律:Java 技术在合规中的作用与挑战(87)
💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也…...
【ISO 14229-1:2023 UDS诊断全量测试用例清单系列:第十五节】
ISO 14229-1:2023 UDS诊断服务测试用例全解析(RoutineControl_0x31服务) 作者:车端域控测试工程师 更新日期:2025年02月14日 关键词:UDS协议、0x31服务、例程控制、ISO 14229-1:2023、ECU测试 一、服务功能概述 0x31服…...
【深度强化学习】策略梯度算法:REINFORCE
策略梯度 强化学习算法进阶 Q-learning、DQN 及 DQN 改进算法都是基于价值(value-based)的方法,其中 Q-learning 是处理有限状态的算法,而 DQN 可以用来解决连续状态的问题。在强化学习中,除了基于值函数的方法&#…...
手机用流量怎样设置代理ip?
互联网各领域资料分享专区(不定期更新): Sheet...
CI/CD部署打包方法
项目目前部署方式: 各地区服务器打包同一个runner(需要互相排队,不并发)各地区客户端可以并发打包,同个地区客户端打多个包需要排队 部署方法 下载gitlab-runner: https://docs.gitlab.com/runner/insta…...
LabVIEW 中dde.llbDDE 通信功能
在 LabVIEW 功能体系中,位于 C:\Program Files (x86)\National Instruments\LabVIEW 2019\vi.lib\Platform\dde.llb 的 dde.llb 库占据着重要的地位。作为一个与动态数据交换(DDE)紧密相关的库文件,它为 LabVIEW 用户提供了与其他…...
探索后端开发中的异步API:基于Resilience4j与Reactive Programming的高性能设计
引言 随着微服务架构的普及,后端系统面临的挑战愈发严峻,尤其是在高并发和高可用性方面。传统的同步调用模式虽然简单,但在处理大量并发请求时可能会成为瓶颈。为了应对这一问题,异步编程逐渐成为后端开发的热门话题。 在本文中…...
leetcode 2915. 和为目标值的最长子序列的长度
题目如下 数据范围 本题就是典型的背包问题target就是容量,nums[i]就是第i个物品的重量。其实就是选最多的物品使得背包刚好装满。 令f(i,j)为当考虑到i - 1物品时刚好装到j重量的物品数。 当j > nums[j]时 有f(i,j) max(f(i - 1,j - nums[i - 1]) 1,f(i -…...
【Vue】打包vue3+vite项目发布到github page的完整过程
文章目录 第一步:打包第二步:github仓库设置第三步:安装插件gh-pages第四步:两个配置第五步:上传github其他问题1. 路由2.待补充 参考文章: 环境: vue3vite windows11(使用终端即可&…...
Flutter编译问题记录
问题: 运行出现以下报错 Launching lib/main.dart on macOS in debug mode... Warning: CocoaPods not installed. Skipping pod install. CocoaPods is a package manager for iOS or macOS platform code. Without CocoaPods, plugins will not work on iOS or …...
poetry shell - 作为插件安装和使用
安装插件 安装完 poetry,想进入环境,执行 poetry shell 后会报错,是因为 poetry shell 在后面的版本中,是作为插件,需要额外安装。 poetry self add poetry-plugin-shell关于 poetry-plugin-shell github : https:/…...
UE5中的快捷键汇总
以下是Unreal Engine 5(UE5)中一些常用的快捷键大全,涵盖编辑器操作、视口导航、蓝图编辑等多个方面(会持续补充作为笔记存在): 通用快捷键 快捷键功能Ctrl S保存当前关卡Ctrl Shift S保存所有Ctrl Z撤销Ctrl C复制Ctrl V…...
2月14(信息差)
🌍杭州:全球数贸港核心区建设方案拟出台 争取国家支持杭州在网络游戏管理给予更多权限 🎄Kimi深夜炸场:满血版多模态o1级推理模型!OpenAI外全球首次!Jim Fan:同天两款国产o1绝对不是巧合&#x…...
ElementUI 的组件 Switch(开关)如何让文字显示在按钮上
效果图: 一、引入switch组件 给组件自定义一个类:tableScopeSwitch,设置开关的值和对应展示的文字(开为 1,并展示启用;关为 0,并展示禁用)。 <div class"tableScopeSwitch…...
Redis常用的五种数据结构详解
一、Redis 数据库介绍 Redis 是一种键值(Key-Value)数据库。相对于关系型数据库(比如 MySQL),Redis 也被叫作非关系型数据库。 像 MySQL 这样的关系型数据库,表的结构比较复杂,会包含很多字段&…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...
如何更改默认 Crontab 编辑器 ?
在 Linux 领域中,crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用,用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益,允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...
宇树科技,改名了!
提到国内具身智能和机器人领域的代表企业,那宇树科技(Unitree)必须名列其榜。 最近,宇树科技的一项新变动消息在业界引发了不少关注和讨论,即: 宇树向其合作伙伴发布了一封公司名称变更函称,因…...
