当前位置: 首页 > news >正文

DeepSeek v3 技术报告阅读笔记

在这里插入图片描述

  1. 本文参考 DeepSeek-v3 / v2 / v1 Technical Report 及相关参考模型论文
  2. 本文不包括基础的知识点讲解,为笔记/大纲性质而非教程,建议阅读技术报告原文
  3. 交流可发送至邮箱 henryhua0721@foxmail.com

在这里插入图片描述
在这里插入图片描述

架构核心

核心:

  • MLA 高效推理
  • DeepSeekMOE 更经济的训练
  • MTP 提高模型性能

架构上看主要改进在于Attention层和FFN层:
在这里插入图片描述

MLA

参考deepseekv2的technical report内容

KV cache

类GPT模型的decoder架构在推理时一个个token输出,每一次输出都作为下一次输出的输入,带来大量重复计算。KV cache空间换时间,降低推理复杂度

w/o KV cache:

每一次推理计算attention时,当前token前的token QK计算在前面步骤被重复计算,结果可以使用KV cache存储而非再次计算。
在这里插入图片描述
huggingface/transformers/gpt2的KV cache代码:

        if layer_past is not None:past_key, past_value = layer_pastkey_states = torch.cat((past_key, key_states), dim=-2)value_states = torch.cat((past_value, value_states), dim=-2)if use_cache is True:present = (key_states, value_states)else:present = None

KV cache存在的问题:对GPU memory的需求巨大
解决办法:

  • Quantization
  • (Deepseek)减小输入以减小cache

Letent KV

在这里插入图片描述
使用letent KV替代传统KV存储到cache中。对kv压缩
在这里插入图片描述

  • 传统attention:k = Wh / v = Wh
  • latent KV:使用更小的letent变量c作为中间变量,可以表示 k/v,存储cache

在推理的时候本质上不需要计算出单独的k和v变量:
在这里插入图片描述

计算q*kT的时候可以使用线性代数运算使得不需要单独提出参数矩阵,而是可以化为大的参数矩阵(图中 W^ QT 和 W^ UK 相乘)

同样对key压缩
在这里插入图片描述

Decouple RoPE

参考:Multi-Head Latent Attention: Boosting Inference Efficiency
RoPE的引入导致q和k都被R矩阵加权,对KV cache造成的损害:
在这里插入图片描述

解决办法:引入新的multi-head queries(和不做低秩分解的q相同)
在这里插入图片描述

  • 每个 attn 层额外增加 multi-head queries q^R
  • 添加共享的key用于 k^R
  • 再将 q^ R 和低秩分解的 q、k^R 和低秩分解的k concate起来

huggingface discussion上似乎提供了更sufficient方法:将rope part和none-rope part进行sum up而非concatenate
(链接找不到了qwq)

在这里插入图片描述

KV cache存储的:

  • c^KV
  • k^R

DeepSeekMOE

MOE

大语言模型主要的计算量集中在attention层,参数量集中在FFN层。
MoE的本质是将FFN分组。好处在于模型易于scale up以及降低cost。
在这里插入图片描述
Gate将输入计算前往各个FFN分组的概率:

  • Dense MoE:计算每个分支的概率,并进行加权
  • Sparse MoE:取概率top-k

每个expert是两个MLP层。
传统MoE的问题:学习知识重合、expert之间无法区分 -> DeepSeekMOE

Load Balance

传统MOE训练出现马太效应:某个单个expert训练较好,引导gate划分更多token给它训练,导致单个expert过拟合、其他expert欠拟合。

Load balance的解决办法:

  • (Switch transformer) loss control:在损失函数中制约
  • (DeepSeek) loss free:添加bias

在这里插入图片描述

DeepSeekMOE

  • 划分更小的exert
  • 设置某些共享expert学习常识

在这里插入图片描述

  • Fine-grained Expert Segmentation
    • N expert -> 2N expert,top2 -> top4。
    • 降低每个expert(两层MLP)中间层宽度,使得model整体参数量没有变大,但是减小了模型variance
  • Shared Expert Isolation:shared expert
    • 具有error correction机制:大多数问题shared expert会回答(通),其他expert(专)进行correct

load balance

  • 添加bias
    在这里插入图片描述

通过添加bias手动提高softmax后某些expert的概率。在训练中,观察后不断进行调整(但是不属于loss的范畴)

  • sequence-wise balance loss(区别于传统的token-wise)
    在这里插入图片描述
  • Node-limited Routing:训练时限制每个token只送到M个nodes中,降低通信成本。
  • No token-dropping:token-dropping是对于load balance比较高的expert drop掉新的token input(直接过残差层不经过FFN)。这里不使用,因为上面的方法已解决load balance。

MTP

Deepseek MTP参考:

  1. Meta MTP
  2. EAGLE
    在这里插入图片描述

当前language model的训练方式导致的问题:

  • teaching force导致training每次输入的都是perfect content
  • NTP导致近视👓,planning能力差
  • 每次只预测下一个token,training signal较弱

-> 一次预测多个token :MTP

Meta MTP

将head分组,每个head负责一个token
在这里插入图片描述

  • training singal更强(每一层都有反馈)
  • 一次预测4个token,加强planning能力
  • 缓解teaching force问题,不再过于local

但是并行heads违背了auto regression的想法,打破前后依赖 -> EAGLE(使用auto regression heads)

Speculative Decoding

LLM inference的问题 -> Slow

  • KV cache
  • speculative decoding
    • quick guess(小模型,快但精度低)
    • cheap verification(大模型,慢但精度高)

实现方式

  • independent:两个LLM一大一小
    • 简化过程:小LM生成sequence后给大LM计算每个token概率,若一致则accept,否则从reject token开始重新生成
    • 实际上使用小LM加速大LM生成过程,大LM生成过程中实时纠错
      在这里插入图片描述
  • self:只借助大LLM中间某些head实现
    • Medusa / EAGLE 模型
      在这里插入图片描述

DeepSeek MTP

使用类似EAGLE的casual arc(而不是parallel)替换META MTP中的实现:
在这里插入图片描述

相关文章:

DeepSeek v3 技术报告阅读笔记

注 本文参考 DeepSeek-v3 / v2 / v1 Technical Report 及相关参考模型论文本文不包括基础的知识点讲解,为笔记/大纲性质而非教程,建议阅读技术报告原文交流可发送至邮箱 henryhua0721foxmail.com 架构核心 核心: MLA 高效推理DeepSeekMOE 更…...

HCIA项目实践(网络)---NAT地址转化技术

十三 NAT网络地址转换技术 13.1 什么是NAT NAT(Network Address Translation)地址转换技术,是一种将内部网络的私有 IP 地址转换为外部网络的公有 IP 地址的技术。其主要作用是实现多个内部网络设备通过一个公有 IP 地址访问外部网络&#x…...

VS studio报错cmake version 3.29.5-msvc4,但是没有其他信息问题解决

背景: windows电脑用VS studio 2022打开一个cmake项目,编译cmake通过,但是没有产生exe文件,IDE也没有打印其他错误信息提示,只有下图: cmake version 3.29.5-msvc4 一开始以为是编译器等问题,…...

免费deepseek的API获取教程及将API接入word或WPS中

免费deepseek的API获取教程: 1 https://cloud.siliconflow.cn/中注册时填写邀请码:GAejkK6X即可获取2000 万 Tokens; 2 按照图中步骤进行操作 将API接入word或WPS中 1 打开一个word,文件-选项-自定义功能区-勾选开发工具-左侧的信任中心-信任中心设置…...

langchain学习笔记之小样本提示词Few-shot Prompt Template

langchain学习笔记之小样本提示词 引言 Few-shot Prompt Templates \text{Few-shot Prompt Templates} Few-shot Prompt Templates简单介绍示例集创建创建 ExamplePrompt \text{ExamplePrompt} ExamplePrompt与 ExampleSelector \text{ExampleSelector} ExampleSelector创建 Fe…...

【CS.SE】优化 Redis 商户号池分配设计:高并发与内存管理

优化 Redis 商户号池分配设计:高并发与内存管理 背景 在分布式交易系统中,商户号池管理是核心模块之一。传统的商户号生成方式,依赖数据库预分配号段,导致大量号段浪费,并且在高并发请求下,性能难以满足需…...

5、《Spring Boot自动配置黑魔法:原理深度剖析》

Spring Boot自动配置黑魔法:原理深度剖析 一、引言:为什么Spring Boot能“开箱即用”? Spring Boot的核心理念是**“约定优于配置”,开发者只需引入一个spring-boot-starter-web依赖,就能直接编写RESTful API&#xf…...

稀土抑烟剂——为纺织品安全加持,保护您的每一寸触感

一、稀土抑烟剂的基本概念 稀土抑烟剂是基于稀土元素(如稀土氧化物和稀土金属化合物)研发的一类新型阻燃材料。它能够有效提高纺织品的阻燃性,抑制火灾发生时产生的烟雾和有害气体,减少火灾对人体的危害。稀土抑烟剂具有更强的稳…...

如何使用CSS画一个三角形,原理是什么?

如何用 CSS 画一个三角形?原理和实战指南 一、核心原理 CSS 画三角形的本质是利用边框(border)的叠加特性。当一个元素的宽高为 0 时,其边框会以对角线形式相交,形成四个独立的三角形区域。通过控制某一边的边框颜色为…...

Docker拉不下来镜像问题解决法案

打开docker的设置界面 配置如下: vi /etc/docker/daemon.json {"builder": {"gc": {"defaultKeepStorage": "20GB","enabled": true}},"experimental": false,"registry-mirrors": ["…...

DeepSeek 多模态大模型Janus-Pro本地部署教程

1.部署环境配置 我个人用的是Mac的m1pro 16512配置,我跑了1B的版本很流畅,7B的也可以跑起来,稍微感觉有一些卡顿。 需要安装Git-lfs,访问官网下载安装包安装,这个工具是用于下载大型文件必备的软件,这里用…...

笔记8——模式匹配 match语句(仅在Python 3.10及以上版本中可用)

文章目录 模式匹配 match语句(仅在 Python 3.10及以上版本 中可用)基本语法基本匹配操作应用场景 模式匹配 match语句(仅在 Python 3.10及以上版本 中可用) Python 3.10 及以上版本中才引入了 match 语句用于简化复杂的条件判断和数据解构;类似于其他语言中的 swit…...

maven-antrun-plugin插件的用法

maven-antrun-plugin 是 Maven 中一个非常强大的插件,它允许你在 Maven 构建过程中运行 Apache Ant 任务。通过这个插件,你可以在 Maven 构建的各个阶段(如 compile、package 等)中执行自定义的 Ant 任务,比如复制文件…...

iOS主要知识点梳理回顾-4-运行时类和实例的操作

类和实例的操作 iOS 运行时(Objective-C Runtime)提供了丰富的 API 来对类进行动态操作,包括创建类、修改类的结构、添加方法、替换方法等。这对于实现动态特性、AOP(面向切面编程)、方法拦截等功能非常重要。以下举例…...

vue2和vue3生命周期的区别通俗易懂

用最直白的对比帮你理解 Vue2 和 Vue3 生命周期的区别,就像对比手机系统的升级: 一、生命周期阶段对比表(老手机 vs 新手机) 阶段Vue2(老系统)Vue3(新系统)变化说明初始化beforeCre…...

使用 meshgrid函数绘制网格点坐标的原理与代码实现

使用 meshgrid 绘制网格点坐标的原理与代码实现 在 MATLAB 中,meshgrid 是一个常用函数,用于生成二维平面网格点的坐标矩阵。本文将详细介绍如何利用 meshgrid 函数生成的矩阵绘制网格点的坐标,并给出具体的代码实现和原理解析。 实现思路 …...

postgresql源码学习(59)—— 磁盘管理器 SMGR

一、 定义及作用 PostgreSQL 的磁盘管理器(Storage Manager,简称 SMGR)是数据库系统中负责管理底层存储的核心模块。磁盘管理器并非直接操作磁盘上的文件,而是通过VFD(虚拟文件描述符,将在后续学习&#xf…...

Spring Boot(8)深入理解 @Autowired 注解:使用场景与实战示例

搞个引言 在 Spring 框架的开发中,依赖注入(Dependency Injection,简称 DI)是它的一个核心特性,它能够让代码更加模块化、可测试,并且易于维护。而 Autowired 注解作为 Spring 实现依赖注入的关键工具&…...

UE_C++ —— Structs

目录 一,实现一个UStruct 二,Struct Specifiers 三,最佳做法与技巧 结构体(Struct)是一种帮助组织和操作相关属性的数据结构;在引擎中,结构体会被引擎反射系统识别为 UStruct,但不…...

ArcGISPro 新建shp+数据结构

import arcpy# 设置工作空间和 Shapefile 存放路径 shp_path r"C:\path\to\your\folder\PolygonZY.shp" # Shapefile 存放路径 fields [("CHBH", "TEXT", 20),("ZCMC", "TEXT", 100),("ZCLX", "TEXT"…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...