当前位置: 首页 > news >正文

微软AutoGen高级功能——Selector Group Chat

介绍

大家好,这次给大家分享的内容是微软AutoGen框架的高级功能Selector Group Chat(选择器群聊),"选择器群聊"我在给大家分享的这篇博文的代码中有所体现微软AutoGen介绍——Custom Agents创建自己的Agents-CSDN博客,但是并没有详细的去介绍该功能(因为那篇博文的重点是讲解Custom Agents😊)。今天通过这次分享,我详细的给大家讲解一下该功能,那么我们直接进入正题。

Selector Group Chat

“SelectorGroupChat”(选择器群组聊天)实现了这样一种团队模式:参与者轮流向所有其他成员广播消息。一个生成式模型(例如,一个大语言模型)会基于共享的上下文信息来选择下一位发言者,从而实现动态的、具备上下文感知能力的协作。

它的主要特点包括:

  • 基于模型的发言者选择
  • 可配置的参与者角色和描述
  • (可选)防止同一位发言者连续发言
  • 可定制的选择提示
  • 可定制的选择函数,用以覆盖默认的基于模型的选择方式

它如何运作

SelectorGroupChat是一种类似于 “轮询式群组聊天”(RoundRobinGroupChat)的群组聊天模式,但它采用了基于模型的下一位发言者选择机制。当团队通过 “run()” 或 “run_stream ()” 接收到一项任务时,会执行以下步骤:

  1. 团队会分析当前的对话上下文,包括对话记录以及参与者的姓名和描述属性,以便使用一个模型来确定下一位发言者。默认情况下,团队不会连续选择同一位发言者,除非该发言者是唯一可用的智能体。这一设定可以通过将“allow_repeated_speaker”设置为“True”来更改。我们也可以通过提供一个自定义的选择函数来替代默认模型。
  2. 团队会促使被选中的发言智能体给出回复,然后该回复会被广播给所有其他参与者。
  3. 接着检查终止条件,以确定对话是否应该结束。如果不结束,就从步骤1开始重复该过程。
  4. 当对话结束时,团队会返回包含本次任务对话记录的“TaskResult”(任务结果)。

一旦团队完成任务,对话上下文会保留在团队及所有参与者之中,这样下一个任务就可以在上一次的对话上下文基础上继续进行。我们可以通过调用“reset()”函数来重置对话上下文。

下面我们将通过一个针对网络搜索和数据分析任务的简单示例,来演示如何使用SelectorGroupChat

智能体流程图

我们使用了三个专用的智能体:

  • 规划智能体:作为战略协调者,它将复杂的任务分解为易于处理的子任务。
  • 网络搜索智能体:这是一位信息检索专家,负责与网络搜索工具进行交互。
  • 数据分析智能体:这是一位擅长执行计算的智能体,配备了百分比变化工具。

search_web_tool和percentage_change_tool是外部工具,智能体可以利用它们来执行各自的任务。

代码演示

# 注意:为了便于演示,本示例使用的是模拟工具,而非真实的应用程序编程接口(API)。
def search_web_tool(query: str) -> str:if "2006-2007" in query:return """Here are the total points scored by Miami Heat players in the 2006-2007 season:Udonis Haslem: 844 pointsDwayne Wade: 1397 pointsJames Posey: 550 points..."""elif "2007-2008" in query:return "The number of total rebounds for Dwayne Wade in the Miami Heat season 2007-2008 is 214."elif "2008-2009" in query:return "The number of total rebounds for Dwayne Wade in the Miami Heat season 2008-2009 is 398."return "No data found."def percentage_change_tool(start: float, end: float) -> float:return ((end - start) / start) * 100

让我们使用“AssistantAgent”类来创建这些专门的智能体。需要重点注意的是,模型会利用智能体的名称和描述属性来确定下一位发言者,所以建议提供有实际意义的名称和描述。

代码演示

model_client = OpenAIChatCompletionClient(model="gpt-4o")planning_agent = AssistantAgent("PlanningAgent",description="An agent for planning tasks, this agent should be the first to engage when given a new task.",model_client=model_client,system_message="""You are a planning agent.Your job is to break down complex tasks into smaller, manageable subtasks.Your team members are:WebSearchAgent: Searches for informationDataAnalystAgent: Performs calculationsYou only plan and delegate tasks - you do not execute them yourself.When assigning tasks, use this format:1. <agent> : <task>After all tasks are complete, summarize the findings and end with "TERMINATE".""",
)web_search_agent = AssistantAgent("WebSearchAgent",description="An agent for searching information on the web.",tools=[search_web_tool],model_client=model_client,system_message="""You are a web search agent.Your only tool is search_tool - use it to find information.You make only one search call at a time.Once you have the results, you never do calculations based on them.""",
)data_analyst_agent = AssistantAgent("DataAnalystAgent",description="An agent for performing calculations.",model_client=model_client,tools=[percentage_change_tool],system_message="""You are a data analyst.Given the tasks you have been assigned, you should analyze the data and provide results using the tools provided.If you have not seen the data, ask for it.""",
)

博主笔记:默认情况下,助手智能体将工具的输出作为回复返回。如果我们的工具没有以自然语言格式返回格式规范的字符串,我们可能需要在创建智能体时通过将 reflect_on_tool_use设置为True,在智能体内部添加一个反思步骤。这将使智能体能够对工具的输出进行反思,并提供自然语言形式的回复。

工作流程

1. 任务由选择器群组聊天接收,它会依据智能体的描述,挑选出最适合处理初始任务的智能体(一般是规划智能体)。
2. 规划智能体对任务进行分析,并将其拆解为多个子任务,然后按照<agent>:<task>的格式,把每个子任务分配给最合适的智能体。
3. 根据对话的上下文以及智能体的描述,选择器群组聊天管理器会动态地挑选出下一个智能体来处理分配给它的子任务。
4. 网络搜索智能体每次执行一次搜索操作,并将结果存储在共享的对话记录中。
5. 当被选中时,数据分析师会使用可用的计算工具来处理收集到的信息。
6. 工作流程会继续动态选择智能体,直到出现以下两种情况之一:
   · 规划智能体判定所有子任务都已完成,然后发送“TERMINATE”指令。
   · 满足了另一个终止条件(例如,达到了消息数量的上限)。

在定义我们的智能体时,请务必包含一个有用的描述(这点非常重要),因为这将被用于决定接下来选择哪个智能体。

终止条件

让我们使用两种终止条件:当规划智能体发送“终止”指令时,使用“文本提及终止(TextMentionTermination)”来结束对话;使用 “最大消息数终止(MaxMessageTermination)” 将对话限制为25条消息,以避免出现无限循环。

代码演示

text_mention_termination = TextMentionTermination("TERMINATE")
max_messages_termination = MaxMessageTermination(max_messages=25)
termination = text_mention_termination | max_messages_termination

运行团队

让我们使用这些智能体、终止条件以及自定义的选择器提示来创建这个团队。

代码演示

team = SelectorGroupChat([planning_agent, web_search_agent, data_analyst_agent],model_client=model_client,termination_condition=termination,selector_prompt=selector_prompt,allow_repeated_speaker=True,  # 允许一个智能体连续进行多轮发言。
)

现在,我们让这个团队执行一项任务,去查找关于一位 NBA 球员的信息。

完整代码

import asyncio
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.conditions import MaxMessageTermination, TextMentionTermination
from autogen_agentchat.teams import SelectorGroupChat
from autogen_agentchat.ui import Console
from autogen_ext.models.openai import OpenAIChatCompletionClient# 注意:为了便于演示,本示例使用的是模拟工具,而非真实的应用程序编程接口(API)。
def search_web_tool(query: str) -> str:if "2006-2007" in query:return """Here are the total points scored by Miami Heat players in the 2006-2007 season:Udonis Haslem: 844 pointsDwayne Wade: 1397 pointsJames Posey: 550 points..."""elif "2007-2008" in query:return "The number of total rebounds for Dwayne Wade in the Miami Heat season 2007-2008 is 214."elif "2008-2009" in query:return "The number of total rebounds for Dwayne Wade in the Miami Heat season 2008-2009 is 398."return "No data found."def percentage_change_tool(start: float, end: float) -> float:return ((end - start) / start) * 100model_client = OpenAIChatCompletionClient(model="gpt-4o")planning_agent = AssistantAgent("PlanningAgent",description="An agent for planning tasks, this agent should be the first to engage when given a new task.",model_client=model_client,system_message="""You are a planning agent.Your job is to break down complex tasks into smaller, manageable subtasks.Your team members are:WebSearchAgent: Searches for informationDataAnalystAgent: Performs calculationsYou only plan and delegate tasks - you do not execute them yourself.When assigning tasks, use this format:1. <agent> : <task>After all tasks are complete, summarize the findings and end with "TERMINATE".""",
)web_search_agent = AssistantAgent("WebSearchAgent",description="An agent for searching information on the web.",tools=[search_web_tool],model_client=model_client,system_message="""You are a web search agent.Your only tool is search_tool - use it to find information.You make only one search call at a time.Once you have the results, you never do calculations based on them.""",
)data_analyst_agent = AssistantAgent("DataAnalystAgent",description="An agent for performing calculations.",model_client=model_client,tools=[percentage_change_tool],system_message="""You are a data analyst.Given the tasks you have been assigned, you should analyze the data and provide results using the tools provided.If you have not seen the data, ask for it.""",
)text_mention_termination = TextMentionTermination("TERMINATE")
max_messages_termination = MaxMessageTermination(max_messages=25)
termination = text_mention_termination | max_messages_terminationselector_prompt = """(Select) an agent to perform task.{roles}Current conversation context:
{history}Read the above conversation, then select an agent from {participants} to perform the next task.
Make sure the planner agent has assigned tasks before other agents start working.
Only select one agent.
"""team = SelectorGroupChat([planning_agent, web_search_agent, data_analyst_agent],model_client=model_client,termination_condition=termination,selector_prompt=selector_prompt,allow_repeated_speaker=True,  # 允许一个智能体连续进行多轮发言。
)task = "Who was the Miami Heat player with the highest points in the 2006-2007 season, and what was the percentage change in his total rebounds between the 2007-2008 and 2008-2009 seasons?"async def main() -> None:await Console(team.run_stream(task=task))asyncio.run(main())

运行结果

---------- user ----------
Who was the Miami Heat player with the highest points in the 2006-2007 season, and what was the percentage change in his total rebounds between the 2007-2008 and 2008-2009 seasons?
---------- PlanningAgent ----------
To answer this question, we'll need to break it down into the following tasks:1. WebSearchAgent: Investigate who was the Miami Heat player with the highest points scored in the 2006-2007 NBA season.
2. WebSearchAgent: Gather statistics for the player's total rebounds during the 2007-2008 NBA season.
3. WebSearchAgent: Collect statistics for the same player's total rebounds during the 2008-2009 NBA season.
4. DataAnalystAgent: Calculate the percentage change in total rebounds for the player between the 2007-2008 and 2008-2009 seasons.Let's begin by gathering the necessary data. 1. WebSearchAgent: Investigate who was the Miami Heat player with the highest points scored in the 2006-2007 NBA season.
---------- WebSearchAgent ----------
[FunctionCall(id='call_knPrF0edlVal8opo7AMMU8Z0', arguments='{"query":"Miami Heat highest points scorer 2006-2007 NBA season"}', name='search_web_tool')]
---------- WebSearchAgent ----------
[FunctionExecutionResult(content='Here are the total points scored by Miami Heat players in the 2006-2007 season:\n        Udonis Haslem: 844 points\n        Dwayne Wade: 1397 points\n        James Posey: 550 points\n        ...\n        ', call_id='call_knPrF0edlVal8opo7AMMU8Z0')]
---------- WebSearchAgent ----------
Here are the total points scored by Miami Heat players in the 2006-2007 season:Udonis Haslem: 844 pointsDwayne Wade: 1397 pointsJames Posey: 550 points...---------- WebSearchAgent ----------
[FunctionCall(id='call_KOP1aR8O2kLGIeAkaUa8dE8u', arguments='{"query": "Dwyane Wade total rebounds 2007-2008 season"}', name='search_web_tool'), FunctionCall(id='call_Hk9j3wvryEhlKpe0YOUgXO46', arguments='{"query": "Dwyane Wade total rebounds 2008-2009 season"}', name='search_web_tool')]
---------- WebSearchAgent ----------
[FunctionExecutionResult(content='The number of total rebounds for Dwayne Wade in the Miami Heat season 2007-2008 is 214.', call_id='call_KOP1aR8O2kLGIeAkaUa8dE8u'), FunctionExecutionResult(content='The number of total rebounds for Dwayne Wade in the Miami Heat season 2008-2009 is 398.', call_id='call_Hk9j3wvryEhlKpe0YOUgXO46')]
---------- WebSearchAgent ----------
The number of total rebounds for Dwayne Wade in the Miami Heat season 2007-2008 is 214.
The number of total rebounds for Dwayne Wade in the Miami Heat season 2008-2009 is 398.---------- DataAnalystAgent ----------
[FunctionCall(id='call_By2X8HJjd7K0B3qKSOti1vJ8', arguments='{"start":214,"end":398}', name='percentage_change_tool')]
---------- DataAnalystAgent ----------
[FunctionExecutionResult(content='85.98130841121495', call_id='call_By2X8HJjd7K0B3qKSOti1vJ8')]
---------- DataAnalystAgent ----------
85.98130841121495
---------- PlanningAgent ----------
To summarize: - The Miami Heat player with the highest points in the 2006-2007 season was Dwyane Wade, with a total of 1,397 points.
- The percentage change in Dwyane Wade's total rebounds from the 2007-2008 season to the 2008-2009 season is approximately 85.98%.TERMINATE进程已结束,退出代码为 0

正如我们所见,在网络搜索智能体进行了必要的搜索,且数据分析智能体完成了必要的计算之后,我们发现德怀恩・韦德是迈阿密热火队在2006-2007赛季得分最高的球员,并且他在2007-2008赛季和2008-2009赛季的总篮板数变化百分比为85.98%!

自定义选择器方法

很多时候,我们希望能更好地控制选择过程。为此,我们可以使用一个自定义的选择器函数来设置selector_func参数,从而覆盖默认的基于模型的选择方式。例如,我们希望规划智能体在任何一个专业智能体发言之后立即发言,以便检查进度。

博主笔记:从自定义选择器函数中返回None将采用默认的基于模型的选择方式。

完整代码

import asyncio
from typing import Sequence
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.conditions import MaxMessageTermination, TextMentionTermination
from autogen_agentchat.messages import AgentEvent, ChatMessage
from autogen_agentchat.teams import SelectorGroupChat
from autogen_agentchat.ui import Console
from autogen_ext.models.openai import OpenAIChatCompletionClient# 注意:为了便于演示,本示例使用的是模拟工具,而非真实的应用程序编程接口(API)。
def search_web_tool(query: str) -> str:if "2006-2007" in query:return """Here are the total points scored by Miami Heat players in the 2006-2007 season:Udonis Haslem: 844 pointsDwayne Wade: 1397 pointsJames Posey: 550 points..."""elif "2007-2008" in query:return "The number of total rebounds for Dwayne Wade in the Miami Heat season 2007-2008 is 214."elif "2008-2009" in query:return "The number of total rebounds for Dwayne Wade in the Miami Heat season 2008-2009 is 398."return "No data found."def percentage_change_tool(start: float, end: float) -> float:return ((end - start) / start) * 100model_client = OpenAIChatCompletionClient(model="gpt-4o")planning_agent = AssistantAgent("PlanningAgent",description="An agent for planning tasks, this agent should be the first to engage when given a new task.",model_client=model_client,system_message="""You are a planning agent.Your job is to break down complex tasks into smaller, manageable subtasks.Your team members are:WebSearchAgent: Searches for informationDataAnalystAgent: Performs calculationsYou only plan and delegate tasks - you do not execute them yourself.When assigning tasks, use this format:1. <agent> : <task>After all tasks are complete, summarize the findings and end with "TERMINATE".""",
)web_search_agent = AssistantAgent("WebSearchAgent",description="An agent for searching information on the web.",tools=[search_web_tool],model_client=model_client,system_message="""You are a web search agent.Your only tool is search_tool - use it to find information.You make only one search call at a time.Once you have the results, you never do calculations based on them.""",
)data_analyst_agent = AssistantAgent("DataAnalystAgent",description="An agent for performing calculations.",model_client=model_client,tools=[percentage_change_tool],system_message="""You are a data analyst.Given the tasks you have been assigned, you should analyze the data and provide results using the tools provided.If you have not seen the data, ask for it.""",
)text_mention_termination = TextMentionTermination("TERMINATE")
max_messages_termination = MaxMessageTermination(max_messages=25)
termination = text_mention_termination | max_messages_terminationselector_prompt = """(Select) an agent to perform task.{roles}Current conversation context:
{history}Read the above conversation, then select an agent from {participants} to perform the next task.
Make sure the planner agent has assigned tasks before other agents start working.
Only select one agent.
"""def selector_func(messages: Sequence[AgentEvent | ChatMessage]) -> str | None:if messages[-1].source != planning_agent.name:return planning_agent.namereturn Noneasync def main() -> None:team = SelectorGroupChat([planning_agent, web_search_agent, data_analyst_agent],model_client=model_client,termination_condition=termination,selector_prompt=selector_prompt,allow_repeated_speaker=True,  # 允许一个智能体连续进行多轮发言。)task = "Who was the Miami Heat player with the highest points in the 2006-2007 season, and what was the percentage change in his total rebounds between the 2007-2008 and 2008-2009 seasons?"await Console(team.run_stream(task=task))# 重置之前的团队,然后使用该选择器函数再次运行聊天程序。await team.reset()team = SelectorGroupChat([planning_agent, web_search_agent, data_analyst_agent],model_client=model_client,termination_condition=termination,selector_prompt=selector_prompt,allow_repeated_speaker=True,selector_func=selector_func,)await Console(team.run_stream(task=task))asyncio.run(main())

运行结果

---------- user ----------
Who was the Miami Heat player with the highest points in the 2006-2007 season, and what was the percentage change in his total rebounds between the 2007-2008 and 2008-2009 seasons?
---------- PlanningAgent ----------
To answer this question, we need to follow these steps: 1. Identify the Miami Heat player with the highest points in the 2006-2007 season.
2. Retrieve the total rebounds of that player for the 2007-2008 and 2008-2009 seasons.
3. Calculate the percentage change in his total rebounds between the two seasons.Let's delegate these tasks:1. WebSearchAgent: Find the Miami Heat player with the highest points in the 2006-2007 NBA season.
2. WebSearchAgent: Retrieve the total rebounds for the identified player during the 2007-2008 NBA season.
3. WebSearchAgent: Retrieve the total rebounds for the identified player during the 2008-2009 NBA season.
4. DataAnalystAgent: Calculate the percentage change in total rebounds between the 2007-2008 and 2008-2009 seasons for the player found.
---------- WebSearchAgent ----------
[FunctionCall(id='call_Pz82ndNLSV4cH0Sg6g7ArP4L', arguments='{"query":"Miami Heat player highest points 2006-2007 season"}', name='search_web_tool')]
---------- WebSearchAgent ----------
[FunctionExecutionResult(content='Here are the total points scored by Miami Heat players in the 2006-2007 season:\n        Udonis Haslem: 844 points\n        Dwayne Wade: 1397 points\n        James Posey: 550 points\n        ...\n        ', call_id='call_Pz82ndNLSV4cH0Sg6g7ArP4L')]
---------- WebSearchAgent ----------
Here are the total points scored by Miami Heat players in the 2006-2007 season:Udonis Haslem: 844 pointsDwayne Wade: 1397 pointsJames Posey: 550 points...---------- PlanningAgent ----------
Great! Dwyane Wade was the Miami Heat player with the highest points in the 2006-2007 season. Now, let's continue with the next tasks:2. WebSearchAgent: Retrieve the total rebounds for Dwyane Wade during the 2007-2008 NBA season.
3. WebSearchAgent: Retrieve the total rebounds for Dwyane Wade during the 2008-2009 NBA season.
---------- WebSearchAgent ----------
[FunctionCall(id='call_3qv9so2DXFZIHtzqDIfXoFID', arguments='{"query": "Dwyane Wade total rebounds 2007-2008 season"}', name='search_web_tool'), FunctionCall(id='call_Vh7zzzWUeiUAvaYjP0If0k1k', arguments='{"query": "Dwyane Wade total rebounds 2008-2009 season"}', name='search_web_tool')]
---------- WebSearchAgent ----------
[FunctionExecutionResult(content='The number of total rebounds for Dwayne Wade in the Miami Heat season 2007-2008 is 214.', call_id='call_3qv9so2DXFZIHtzqDIfXoFID'), FunctionExecutionResult(content='The number of total rebounds for Dwayne Wade in the Miami Heat season 2008-2009 is 398.', call_id='call_Vh7zzzWUeiUAvaYjP0If0k1k')]
---------- WebSearchAgent ----------
The number of total rebounds for Dwayne Wade in the Miami Heat season 2007-2008 is 214.
The number of total rebounds for Dwayne Wade in the Miami Heat season 2008-2009 is 398.
---------- PlanningAgent ----------
Now let's calculate the percentage change in total rebounds between the 2007-2008 and 2008-2009 seasons for Dwyane Wade.4. DataAnalystAgent: Calculate the percentage change in total rebounds for Dwyane Wade between the 2007-2008 and 2008-2009 seasons.
---------- DataAnalystAgent ----------
[FunctionCall(id='call_FXnPSr6JVGfAWs3StIizbt2V', arguments='{"start":214,"end":398}', name='percentage_change_tool')]
---------- DataAnalystAgent ----------
[FunctionExecutionResult(content='85.98130841121495', call_id='call_FXnPSr6JVGfAWs3StIizbt2V')]
---------- DataAnalystAgent ----------
85.98130841121495
---------- PlanningAgent ----------
Dwyane Wade was the Miami Heat player with the highest points in the 2006-2007 season, scoring a total of 1397 points. The percentage change in his total rebounds from the 2007-2008 season (214 rebounds) to the 2008-2009 season (398 rebounds) is approximately 86.0%.TERMINATE进程已结束,退出代码为 0

从对话记录中你可以看到,PlanningAgent总是在WebSearchAgentDataAnalystAgent智能体发言后立刻发言。

添加用户反馈功能

我们可以将用户代理智能体(UserProxyAgent)添加到团队中,以便在运行过程中收集用户反馈。

要在网络搜索示例中使用用户代理智能体(UserProxyAgent),我们只需将其添加到团队中,并更新选择器函数,使其在规划智能体发言后始终检查是否有用户反馈。如果用户回复“APPROVE”(批准),对话将继续进行;否则,规划智能体将再次尝试,直到用户批准为止。

完整代码

import asyncio
from typing import Sequence
from autogen_agentchat.agents import AssistantAgent, UserProxyAgent
from autogen_agentchat.conditions import MaxMessageTermination, TextMentionTermination
from autogen_agentchat.messages import AgentEvent, ChatMessage
from autogen_agentchat.teams import SelectorGroupChat
from autogen_agentchat.ui import Console
from autogen_ext.models.openai import OpenAIChatCompletionClient# 注意:为了便于演示,本示例使用的是模拟工具,而非真实的应用程序编程接口(API)。
def search_web_tool(query: str) -> str:if "2006-2007" in query:return """Here are the total points scored by Miami Heat players in the 2006-2007 season:Udonis Haslem: 844 pointsDwayne Wade: 1397 pointsJames Posey: 550 points..."""elif "2007-2008" in query:return "The number of total rebounds for Dwayne Wade in the Miami Heat season 2007-2008 is 214."elif "2008-2009" in query:return "The number of total rebounds for Dwayne Wade in the Miami Heat season 2008-2009 is 398."return "No data found."def percentage_change_tool(start: float, end: float) -> float:return ((end - start) / start) * 100model_client = OpenAIChatCompletionClient(model="gpt-3.5-turbo-0125")planning_agent = AssistantAgent("PlanningAgent",description="An agent for planning tasks, this agent should be the first to engage when given a new task.",model_client=model_client,system_message="""You are a planning agent.Your job is to break down complex tasks into smaller, manageable subtasks.Your team members are:WebSearchAgent: Searches for informationDataAnalystAgent: Performs calculationsYou only plan and delegate tasks - you do not execute them yourself.When assigning tasks, use this format:1. <agent> : <task>After all tasks are complete, summarize the findings and end with "TERMINATE".""",
)web_search_agent = AssistantAgent("WebSearchAgent",description="An agent for searching information on the web.",tools=[search_web_tool],model_client=model_client,system_message="""You are a web search agent.Your only tool is search_tool - use it to find information.You make only one search call at a time.Once you have the results, you never do calculations based on them.""",
)data_analyst_agent = AssistantAgent("DataAnalystAgent",description="An agent for performing calculations.",model_client=model_client,tools=[percentage_change_tool],system_message="""You are a data analyst.Given the tasks you have been assigned, you should analyze the data and provide results using the tools provided.If you have not seen the data, ask for it.""",
)text_mention_termination = TextMentionTermination("TERMINATE")
max_messages_termination = MaxMessageTermination(max_messages=25)
termination = text_mention_termination | max_messages_terminationselector_prompt = """(Select) an agent to perform task.{roles}Current conversation context:
{history}Read the above conversation, then select an agent from {participants} to perform the next task.
Make sure the planner agent has assigned tasks before other agents start working.
Only select one agent.
"""user_proxy_agent = UserProxyAgent("UserProxyAgent", description="A proxy for the user to approve or disapprove tasks.")def selector_func_with_user_proxy(messages: Sequence[AgentEvent | ChatMessage]) -> str | None:if messages[-1].source != planning_agent.name and messages[-1].source != user_proxy_agent.name:# 当接到新任务时,或者要检查进度时,规划智能体应该率先参与进来。return planning_agent.nameif messages[-1].source == planning_agent.name:if messages[-2].source == user_proxy_agent.name and "APPROVE" in messages[-1].content.upper():  # type: ignore# 用户已批准该计划,继续让下一个智能体进行操作。return None# 使用用户代理智能体来获取用户的批准以便继续进行。return user_proxy_agent.nameif messages[-1].source == user_proxy_agent.name:# 如果用户不批准,就回到让PlanningAgent来处理。if "APPROVE" not in messages[-1].content.upper():  # 类型:忽略return planning_agent.namereturn Noneasync def main() -> None:team = SelectorGroupChat([planning_agent, web_search_agent, data_analyst_agent],model_client=model_client,termination_condition=termination,selector_prompt=selector_prompt,allow_repeated_speaker=True,  # 允许一个智能体连续进行多轮发言。)task = "Who was the Miami Heat player with the highest points in the 2006-2007 season, and what was the percentage change in his total rebounds between the 2007-2008 and 2008-2009 seasons?"await Console(team.run_stream(task=task))# 重置之前的智能体,然后结合用户代理智能体和选择器函数再次运行聊天程序。await team.reset()team = SelectorGroupChat([planning_agent, web_search_agent, data_analyst_agent, user_proxy_agent],model_client=model_client,termination_condition=termination,selector_prompt=selector_prompt,selector_func=selector_func_with_user_proxy,allow_repeated_speaker=True,)await Console(team.run_stream(task=task))asyncio.run(main())

运行结果

---------- user ----------
Who was the Miami Heat player with the highest points in the 2006-2007 season, and what was the percentage change in his total rebounds between the 2007-2008 and 2008-2009 seasons?
---------- PlanningAgent ----------
To address the user's query, we will need to perform the following tasks:1. Identify the Miami Heat player with the highest points in the 2006-2007 season.
2. Find the total rebounds for that player in the 2007-2008 season.
3. Find the total rebounds for that player in the 2008-2009 season.
4. Calculate the percentage change in the total rebounds between the 2007-2008 and 2008-2009 seasons.Let's assign these tasks:1. **WebSearchAgent**: Identify the Miami Heat player with the highest points in the 2006-2007 season.(Task 2 and 3 depend on the result of Task 1. We'll proceed with Tasks 2 and 3 once Task 1 is complete.)
---------- UserProxyAgent ----------
approve
---------- WebSearchAgent ----------
[FunctionCall(id='call_0prr3fUnG5CtisUG7QeygW0w', arguments='{"query":"Miami Heat highest points scorer 2006-2007 NBA season"}', name='search_web_tool')]
---------- WebSearchAgent ----------
[FunctionExecutionResult(content='Here are the total points scored by Miami Heat players in the 2006-2007 season:\n        Udonis Haslem: 844 points\n        Dwayne Wade: 1397 points\n        James Posey: 550 points\n        ...\n        ', call_id='call_0prr3fUnG5CtisUG7QeygW0w')]
---------- WebSearchAgent ----------
Here are the total points scored by Miami Heat players in the 2006-2007 season:Udonis Haslem: 844 pointsDwayne Wade: 1397 pointsJames Posey: 550 points...---------- PlanningAgent ----------
Dwyane Wade was the Miami Heat player with the highest points in the 2006-2007 season, scoring 1397 points.Next, we need to find Dwyane Wade's total rebounds for the 2007-2008 and 2008-2009 seasons:2. **WebSearchAgent**: Find Dwyane Wade's total rebounds for the 2007-2008 season.
3. **WebSearchAgent**: Find Dwyane Wade's total rebounds for the 2008-2009 season.
---------- UserProxyAgent ----------
approve
---------- WebSearchAgent ----------
[FunctionCall(id='call_fBZe80NaBfruOVGwRWbhXyRm', arguments='{"query": "Dwyane Wade total rebounds 2007-2008 NBA season"}', name='search_web_tool'), FunctionCall(id='call_cURYibna4fGxySiL7IYt0c3s', arguments='{"query": "Dwyane Wade total rebounds 2008-2009 NBA season"}', name='search_web_tool')]
---------- WebSearchAgent ----------
[FunctionExecutionResult(content='The number of total rebounds for Dwayne Wade in the Miami Heat season 2007-2008 is 214.', call_id='call_fBZe80NaBfruOVGwRWbhXyRm'), FunctionExecutionResult(content='The number of total rebounds for Dwayne Wade in the Miami Heat season 2008-2009 is 398.', call_id='call_cURYibna4fGxySiL7IYt0c3s')]
---------- WebSearchAgent ----------
The number of total rebounds for Dwayne Wade in the Miami Heat season 2007-2008 is 214.
The number of total rebounds for Dwayne Wade in the Miami Heat season 2008-2009 is 398.
---------- PlanningAgent ----------
Now that we have Dwyane Wade's total rebounds for both seasons, we can calculate the percentage change:4. **DataAnalystAgent**: Calculate the percentage change in Dwyane Wade's total rebounds from the 2007-2008 season (214 rebounds) to the 2008-2009 season (398 rebounds).
---------- UserProxyAgent ----------
approve
---------- DataAnalystAgent ----------
[FunctionCall(id='call_z3uog7t2x0z1Suzl5hACF9hY', arguments='{"start":214,"end":398}', name='percentage_change_tool')]
---------- DataAnalystAgent ----------
[FunctionExecutionResult(content='85.98130841121495', call_id='call_z3uog7t2x0z1Suzl5hACF9hY')]
---------- DataAnalystAgent ----------
85.98130841121495
---------- PlanningAgent ----------
Dwyane Wade was the Miami Heat player with the highest points in the 2006-2007 season, scoring 1397 points. His total rebounds increased from 214 in the 2007-2008 season to 398 in the 2008-2009 season, which is a percentage change of approximately 85.98%.TERMINATE进程已结束,退出代码为 0

通过上述演示我们看到,用户的反馈已融入到对话流程中,用户可以批准或否决规划智能体所做出的决策。

说明

如果大家在运行上述代码的时候有AutoGen相关的提示或报错(例如:该参数不存在,没有此类方法等),请尝试更新一下AutoGen,博主在分享这篇博文的时候,AutoGen的版本是0.4.6稳定版

安装或更新命令

pip install -U "autogen-agentchat" "autogen-ext[openai,azure]"

另外大家要根据业务需求,设置使用的LLM,不一定要按照我给大家分享代码中的设置来,如果只是为了测试并看运行结果可直接复制粘贴代码(完整代码)

结束

好了,以上就是本次分享的全部内容了,今天的代码量有点多,请大家耐心看完和耐心在本地电脑调试,我相信大家肯定会有所收获,或者脱口而出来一句“哦~原来是这么回事”(哈哈)。为了让大家加深一下今天的分享内容,博主再次帮助大家整理下SelectorGroupChat(类)。

在微软AutoGen中,SelectorGroupChat主要用于在多智能体(multi-agent)的聊天场景中,根据特定的逻辑和条件来选择合适的智能体进行发言,以更好地管理和协调智能体之间的交互过程。具体来说,它有以下几个关键作用:

  • 自定义选择逻辑:允许用户通过设置自定义的选择器函数(selector function)来覆盖默认的智能体选择方式。用户可以根据自己的需求和业务逻辑,决定在特定情况下哪个智能体应该发言。例如,规定某个规划智能体在其他专业智能体完成特定任务后立刻发言,以检查进度。
  • 融入用户反馈:可以与用户代理智能体(UserProxyAgent)结合使用,将用户反馈纳入到智能体的选择和对话流程中。根据用户的批准或拒绝等反馈信息,决定后续由哪个智能体继续参与对话,从而实现“人机交互”(Human-in-the-Loop)的交互模式,使整个对话过程更加灵活和符合实际需求。
  • 协调智能体交互:在多智能体协作的场景中,管理不同智能体之间的发言顺序和时机,确保对话能够有序进行,避免混乱和不必要的重复交流,提高多智能体系统的协作效率和交互效果。

总之,SelectorGroupChat为微软AutoGen中的多智能体聊天场景提供了更灵活、可定制的智能体选择和交互管理机制。

大家明白了吧?博主这次分享的内容首先让大家知道微软AutoGen框架中有这样一个功能,另外使用SelectorGroupChat的程度取决于具体的应用场景和用户需求。例如在需要多个智能体紧密协作完成复杂任务的场景中,如多领域专家协同解决复杂问题、大型项目的多角色团队协作等,SelectorGroupChat是非常常用的。还比如,在智能客服、智能助手等需要与用户进行多轮交互的系统中,如果希望根据用户输入和对话状态,灵活调配不同功能的智能体来提供服务,SelectorGroupChat也会经常被用到。请大家根据自己的项目类型和所涉及到的行业来选择去使用。博主还是那句话,请大家多去大胆的尝试和使用。如果大家对博主分享的内容感兴趣或有帮助,请点赞和关注,大家的点赞和关注是博主持续分享的动力🤭。

相关文章:

微软AutoGen高级功能——Selector Group Chat

介绍 大家好&#xff0c;这次给大家分享的内容是微软AutoGen框架的高级功能Selector Group Chat(选择器群聊)&#xff0c;"选择器群聊"我在给大家分享的这篇博文的代码中有所体现微软AutoGen介绍——Custom Agents创建自己的Agents-CSDN博客&#xff0c;但是并没有详…...

w206基于Spring Boot的农商对接系统的设计与实现

&#x1f64a;作者简介&#xff1a;多年一线开发工作经验&#xff0c;原创团队&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取&#xff0c;记得注明来意哦~&#x1f339;赠送计算机毕业设计600个选题excel文…...

Springboot中使用Elasticsearch(部署+使用+讲解 最完整)

目录 引言 一、docker中安装Elasticsearch 1、创建es专有的网络 2、开放端口 3、在es-net网络上安装es和kibana 4、可能出现的问题 5、测试 6、安装IK分词器 7、测试IK分词器 二、结合业务实战 1、准备依赖 2、配置yml 3、读取yml配置 4、准备es配置类 5、编写测…...

深度求索—DeepSeek API的简单调用(Java)

DeepSeek简介 DeepSeek&#xff08;深度求索&#xff09;是由中国人工智能公司深度求索&#xff08;DeepSeek Inc.&#xff09;研发的大规模语言模型&#xff08;LLM&#xff09;&#xff0c;专注于提供高效、智能的自然语言处理能力&#xff0c;支持多种场景下的文本生成、对…...

flv实时监控视频

文章目录 前言一、安装二、引入三、使用 前言 开发大屏项目时&#xff0c;可能需要在大屏上展示一个监控画面&#xff0c;此时就可以用的flv.js来展示视频效果 一、安装 npm install flv.js二、引入 import flvjs from flv.js;三、使用 <video ref"videoElement&quo…...

有哪些免费的SEO软件优化工具

随着2025年互联网的不断发展&#xff0c;越来越多的企业意识到在数字营销中&#xff0c;网站的曝光度和排名至关重要。无论是想要提高品牌知名度&#xff0c;还是想要通过在线销售增加收益&#xff0c;SEO&#xff08;搜索引擎优化&#xff09;都是一项不可忽视的关键策略。而要…...

跟着ai辅助学习vue3

第一章&#xff1a;基础入门&#xff08;1 - 2 周&#xff09; 1. 了解 Vue 3 概述 阅读官方文档简介 访问 Vue 3 官方文档&#xff0c;在首页或简介板块中&#xff0c;重点了解 Vue 3 相较于 Vue 2 的重大变革。比如&#xff0c;Vue 3 采用了 Proxy 实现响应式系统&#xff…...

什么是Mustache

Mustache 是一种轻量级模板引擎&#xff0c;用于将变量插入到模板中生成最终的文本输出。它的设计简单且易于使用&#xff0c;适用于多种编程语言&#xff0c;包括 JavaScript、Python、Ruby、Java 等。 Mustache 的模板语法使用双大括号 {{}} 包裹变量或表达式&#xff0c;用…...

C++,STL容器适配器,priority_queue:优先队列深入解析

文章目录 一、容器概览与核心特性核心特性速览二、底层实现原理1. 二叉堆结构2. 容器适配器架构三、核心操作详解1. 容器初始化2. 元素操作接口3. 自定义优先队列四、实战应用场景1. 任务调度系统2. 合并K个有序链表五、性能优化策略1. 底层容器选择2. 批量建堆优化六、注意事项…...

1.综述 Google 的软件工程读书笔记

Google 的软件工程由Google的多位资深工程师合著&#xff0c;分享了他们在管理Google庞大代码库&#xff08;超过20亿行代码&#xff09;过程中总结的经验教训。这本书不仅涵盖了软件工程的理论知识&#xff0c;还结合了Google的实际案例&#xff0c;展示了如何在大规模、复杂的…...

vue框架生命周期详细解析

Vue.js 的生命周期钩子函数是理解 Vue 组件行为的关键。每个 Vue 实例在创建、更新和销毁过程中都会经历一系列的生命周期阶段&#xff0c;每个阶段都有对应的钩子函数&#xff0c;开发者可以在这些钩子函数中执行特定的操作。 Vue 生命周期概述 Vue 的生命周期可以分为以下几…...

复杂电磁环境下无人机自主导航增强技术研究报告——地磁匹配与多源数据融合方法,附matlab代码

本文给出介绍和matlab程序&#xff0c;来实现地磁辅助惯性导航仿真验证&#xff0c;包含地磁基准图构建、飞行轨迹生成、INS误差建模、地磁匹配定位及多源数据融合等模块。通过对比分析验证地磁匹配修正惯性导航累积误差的有效性&#xff0c;可视化显示卫星拒止环境下的航迹修正…...

蓝桥杯---排序数组(leetcode第912题)

文章目录 1.题目重述2.思路分析3.代码解释 1.题目重述 题目的要求是不使用库函数或者是其他的内置的函数&#xff08;就是已经实现好的函数&#xff09;&#xff0c;也就是这个排序的逻辑需要我们自己进行实现&#xff1b; 2.思路分析 其实这个例子也是很容易理解的&#xff…...

考研高数复习规范

前言 这里记录我的高数复习规范与规划&#xff0c;希望能给需要考研的同学一点启发 规范原因 高数的内容很多&#xff0c;关键的是&#xff1a;会做题、拿高分首先最重要的就是抓住概念。比如有界无界的概念&#xff0c;间断点的概念、极限的概念其次是做题过程中得到的方法…...

Stable diffusion只换衣服的方法

大概看了几个帖子感觉说的都不是很清楚&#xff0c;也大部分都是保持人物一致性&#xff0c;不能只改变衣服&#xff0c;自己摸索了一下&#xff0c;需要使用三个controlnet&#xff1a;一个openpose、一个lineart&#xff0c;一个depth&#xff0c;三个controlnet使用同一个参…...

无人机航迹规划: 梦境优化算法(Dream Optimization Algorithm,DOA)求解无人机路径规划MATLAB

一、梦境优化算法 梦境优化算法&#xff08;Dream Optimization Algorithm&#xff0c;DOA&#xff09;是一种新型的元启发式算法&#xff0c;其灵感来源于人类的梦境行为。该算法结合了基础记忆策略、遗忘和补充策略以及梦境共享策略&#xff0c;通过模拟人类梦境中的部分记忆…...

LlamaFactory可视化模型微调-Deepseek模型微调+CUDA Toolkit+cuDNN安装

LlamaFactory https://llamafactory.readthedocs.io/zh-cn/latest/ 安装 必须保证版本匹配&#xff0c;否则到训练时&#xff0c;找不到gpu cuda。 否则需要重装。下面图片仅供参考。因为cuda12.8装了没法用&#xff0c;重新搞12.6 cudacudnnpytorch12.69.612.6最新&#xf…...

算法12-贪心算法

一、贪心算法概念 贪心算法&#xff08;Greedy Algorithm&#xff09;是一种在每一步选择中都采取当前状态下最优的选择&#xff0c;从而希望导致全局最优解的算法。贪心算法的核心思想是“局部最优&#xff0c;全局最优”&#xff0c;即通过一系列局部最优选择&#xff0c;最…...

js实现点击音频实现播放功能

目录 1. HTML 部分&#xff1a;音频播放控件 2. CSS 部分&#xff1a;样式设置 3. JavaScript 部分&#xff1a;音频控制 播放和暂停音频&#xff1a; 倒计时更新&#xff1a; 播放结束后自动暂停&#xff1a; 4. 总结&#xff1a; 完整代码&#xff1a; 今天通过 HTML…...

matlab平面波展开法计算的二维声子晶体带隙

平面波展开法计算的二维声子晶体带隙&#xff0c;分别是正方与圆形散射体形成正方格子声子晶体&#xff0c;最后输出了能带图的数据&#xff0c;需要自己用画图软件画出来。 列表 平面波展开法计算二维声子晶体带隙/a2.m , 15823 平面波展开法计算二维声子晶体带隙/a4.m , 942…...

idea大量爆红问题解决

问题描述 在学习和工作中&#xff0c;idea是程序员不可缺少的一个工具&#xff0c;但是突然在有些时候就会出现大量爆红的问题&#xff0c;发现无法跳转&#xff0c;无论是关机重启或者是替换root都无法解决 就是如上所展示的问题&#xff0c;但是程序依然可以启动。 问题解决…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用

一、方案背景​ 在现代生产与生活场景中&#xff0c;如工厂高危作业区、医院手术室、公共场景等&#xff0c;人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式&#xff0c;存在效率低、覆盖面不足、判断主观性强等问题&#xff0c;难以满足对人员打手机行为精…...