多模态本地部署和ollama部署Llama-Vision实现视觉问答
文章目录
- 一、模型介绍
- 二、预期用途
- 1. 视觉问答(VQA)与视觉推理
- 2. 文档视觉问答(DocVQA)
- 3. 图像字幕
- 4. 图像-文本检索
- 5. 视觉接地
- 三、本地部署
- 1. 下载模型
- 2. 模型大小
- 3. 运行代码
- 四、ollama部署
- 1. 安装ollama
- 2. 安装 Llama 3.2 Vision 模型
- 3. 运行 Llama 3.2-Vision
- 五、效果展示
一、模型介绍
Llama 3.2-Vision 是一系列多模态大语言模型(LLM),包括预训练和指令调优的图像推理生成模型大小分别为11B和90B(输入为文本+图像/输出为文本)。Lama 3.2-Vision 指令调优模型针对视觉识别、图像推理、字幕生成以及回答关于图像的一般问题进行了优化。这些模型在常见的行业基准测试中表现优于许多可用的开源和闭源多模态模型,
模型开发者: Meta
模型架构: Llama 3.2-Vision 基于 Lama 3.1 文本模型构建,后者是一个使用优化的Transformer架构的自回归语言模型。调优版本使用有监督的微调(SFT)和基于人类反馈的强化学习(RLHF)来与人类对有用性和安全性的偏好保持一致。为了支持图像识别任务,Llama 3.2-Vision 模型使用了单独训练的视觉适配器,该适配器与预训练的 Llama 3.1 语言模型集成。适配器由一系列交叉注意力层组成,将图像编码器表示传递给核心LLM。
支持的语言:对于纯文本任务,官方支持英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。Llama3.2的训练数据集包含了比这八种语言更广泛的语言。注意,对于图像+文本应用,仅支持英语。
开发者可以在遵守 Llama 3.2 社区许可证和可接受使用政策的前提下,对 Lama 3.2 模型进行其他语言的微调。开发者始终应确保其部署,包括涉及额外语言的部署,是安全且负责任的。
模型发布日期:2024年9月25日

二、预期用途
预期用途案例: Llama 3.2-Vision旨在用于商业和研究用途。经过指令调优的模型适用于视觉识别、图像推理、字幕添加以及带有图像的助手式聊天,而预训练模型可以适应多种图像推理任务。此外,由于Llama 3.2-Vision能够接受图像和文本作为输入,因此还可能包括以下用途:
1. 视觉问答(VQA)与视觉推理
想象一台机器能够査看图片并理解您对其提出的问题。
2. 文档视觉问答(DocVQA)
想象计算机能够理解文档(如地图或合同)中的文本和布局,并直接从图像中回答问题。
3. 图像字幕
图像字幕架起了视觉与语言之间的桥梁,提取细节,理解场景,然后构造一两句讲述故事的话。
4. 图像-文本检索
图像-文本检索就像是为图像及其描述做媒人。类似于搜索引擎,但这种引擎既理解图片也理解文字。
5. 视觉接地
视觉接地就像将我们所见与所说连接起来。它关乎于理解语言如何引用图像中的特定部分,允许AI模型基于自然语言描述来精确定位对象或区域。
三、本地部署
1. 下载模型
#模型下载
from modelscope import snapshot_download model_dir = snapshot_download('AI-ModelScope/Llama-3.2-11B-Vision-Instruct-GGUF')
2. 模型大小

3. 运行代码
在运行代码前先确保安装了transformers包
pip install --upgrade transformers
import requests
import torch
from PIL import Image
from transformers import MllamaForConditionalGeneration, AutoProcessor
from modelscope import snapshot_download
model_id = "LLM-Research/Llama-3.2-11B-Vision-Instruct"
model_dir = snapshot_download(model_id, ignore_file_pattern=['*.pth'])model = MllamaForConditionalGeneration.from_pretrained(model_dir,torch_dtype=torch.bfloat16,device_map="auto",
)
processor = AutoProcessor.from_pretrained(model_dir)url = "https://www.modelscope.cn/models/LLM-Research/Llama-3.2-11B-Vision/resolve/master/rabbit.jpg"
image = Image.open(requests.get(url, stream=True).raw)messages = [{"role": "user", "content": [{"type": "image"},{"type": "text", "text": "If I had to write a haiku for this one, it would be: "}]}
]
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(image, input_text, return_tensors="pt").to(model.device)output = model.generate(**inputs, max_new_tokens=30)
print(processor.decode(output[0]))
四、ollama部署
ollama部署模型最为方便,不需要写运行代码,也不需要安装各种库,ollama安装好后,run相应模型,它会自动下载,然后直接可以进行提问,不需要运行什么代码。
1. 安装ollama
#o11ama版本需大于等于0.4.0
curl -fsSL https://ollama.com/install.sh | sh
#查看o1lama版本
ollama --version
2. 安装 Llama 3.2 Vision 模型
o1lama run 1lama3.2-vision:1lb
3. 运行 Llama 3.2-Vision
将 images.png替换为自己的图像路径。模型将分析图像并根据其理解提供响应。
ollama run x/llama3.2-vision:latest "which era does this piece belong to? Give details about the era: images.png
五、效果展示

给大模型一张图片,然后附带问题是:这件作品属于哪个时代?详细介绍那个时代。下面是模型输出
The piece is a painting of a woman in a red dress, surrounded by gold and white ornate details.The woman is depicted in mid-air, with her arms outstretched and her legs bent at the knees. Sheis holding a bouquet of flowers in her right hand and a fruit in her left hand.
The background of the painting is a light blue sky with pink clouds, and there are also some pinkflowers and green leaves surrounding the woman. The overall atmosphere of the painting is oneof joy and celebration, as if the woman is dancing or celebrating something.
This piece belongs to the Rococo era, which was a style of art and architecture that emerged inEurope in the 18th century. The Rococo style is characterized by its use of pastel colors, curvedlines, and ornate details. lt was popularized during the reign of King Louis XV of France, who ruledfrom 1715 to 1774.
为更直观翻译下,可以看到基本把图片细节都描述很清楚,同事也给出了大致时代。

相关文章:
多模态本地部署和ollama部署Llama-Vision实现视觉问答
文章目录 一、模型介绍二、预期用途1. 视觉问答(VQA)与视觉推理2. 文档视觉问答(DocVQA)3. 图像字幕4. 图像-文本检索5. 视觉接地 三、本地部署1. 下载模型2. 模型大小3. 运行代码 四、ollama部署1. 安装ollama2. 安装 Llama 3.2 Vision 模型3. 运行 Llama 3.2-Vision 五、效果…...
cuML机器学习GPU库
cuML安装官网:Installation Guide - RAPIDS Docs 转载:Linux下cuML库的安装与Jupyter集成调试教程-CSDN博客...
机器学习数学基础:24.随机事件与概率
一、教程目标 本教程致力于帮助零基础或基础薄弱的学习者,全面掌握概率论与数理统计的基础公式,透彻理解核心概念,熟练学会应用解题技巧,最终能够轻松应对期末或考研考试。 二、适用人群 特别适合那些对概率论与数理统计知识了…...
CAS单点登录(第7版)27.开发人员
如有疑问,请看视频:CAS单点登录(第7版) 开发人员 Javadocs文档 group org.apereo.cas has published 42 artifact(s) with total 8210 version(s) org.apereo.cas org apereo.cas 小组已出版 42 件作品,共 8210 个版…...
DeepSeek+即梦 做AI视频
DeepSeek做AI视频 制作流程第一步:DeepSeek 生成视频脚本和分镜 第二步:生成分镜图片绘画提示词第三步:生成分镜图片第四步:使用可灵 AI 工具,将生成的图片转成视频。第五步:剪映成短视频 DeepSeek 真的强&…...
OpenMetadata 获取 MySQL 数据库表血缘关系详解
概述 OpenMetadata 是一个开源的元数据管理平台,支持端到端的血缘关系追踪。对于 MySQL 数据库,OpenMetadata 通过解析表的外键约束、视图定义及查询日志(可选)构建表级血缘。本文结合源码分析其实现机制。 环境配置与数据摄取 1. 配置文件示例(YAML) source:type: my…...
计算机组成原理—— 总线系统(十二)
不要害怕失败,因为每一次跌倒都是站起来的前奏;不要畏惧未知,因为在探索的过程中你会发现未曾预见的美好。你的每一步努力都在为未来的成功铺路,即使现在看不到成果,但请相信积累的力量。那些看似平凡的努力࿰…...
详解如何使用Pytest内置Fixture tmp_path 管理临时文件
关注开源优测不迷路 大数据测试过程、策略及挑战 测试框架原理,构建成功的基石 在自动化测试工作之前,你应该知道的10条建议 在自动化测试中,重要的不是工具 临时目录在测试中起着至关重要的作用,它为执行和验证代码提供了一个可控…...
Banana Pi OpenWRT One 官方路由器的第一印象
OpenWRT One是OpenWRT开源社区推出的首款官方开发板,与Banana Pi社区共同设计,由Banana Pi制造和发行。路由器采用蓝色铝合金外壳,质感极佳,视觉效果远超宣传图。整体设计简洁,呈长方形,虽然不是特别时尚&a…...
Golang GORM系列:GORM事务及错误处理
在数据库管理领域,确保数据完整性至关重要。GORM是健壮的Go对象关系映射库,它为开发人员提供了维护数据一致性和优雅地处理错误的基本工具。本文是掌握GORM事务和错误处理的全面指南。我们将深入研究如何使用事务来保证原子性,并探索有效处理…...
NLLB 与 ChatGPT 双向优化:探索翻译模型与语言模型在小语种应用的融合策略
作者:来自 vivo 互联网算法团队- Huang Minghui 本文探讨了 NLLB 翻译模型与 ChatGPT 在小语种应用中的双向优化策略。首先介绍了 NLLB-200 的背景、数据、分词器和模型,以及其与 LLM(Large Language Model)的异同和协同关系。接着…...
ASP.NET Core SixLabors.ImageSharp v1.0 的图像实用程序类 web示例
这个小型实用程序库需要将 NuGet SixLabors.ImageSharp包(版本 1.0.4)添加到.NET Core 3.1/ .NET 6 / .NET 8项目中。它与Windows、Linux和 MacOS兼容。 这已针对 ImageSharp v3.0.1 进行了重新设计。 它可以根据百万像素数或长度乘以宽度来调整图像大…...
ffmpeg configure 研究1-命令行参数的分析
author: hjjdebug date: 2025年 02月 14日 星期五 17:16:12 CST description: ffmpeg configure 研究1 ./configure 命令行参数的分析 文章目录 1 configure 对命令行参数的分析,在4019行1.1 函数名称: is_in1.2. 函数名称: enable1.3. 函数名称: set_all 2 执行退出判断的关键…...
数据结构与算法之排序算法-归并排序
排序算法是数据结构与算法中最基本的算法之一,其作用就是将一些可以比较大小的数据进行有规律的排序,而想要实现这种排序就拥有很多种方法~ 那么我将通过几篇文章,将排序算法中各种算法细化的,详尽的为大家呈现出来: …...
高血压危险因素分析(项目分享)
高血压危险因素分析(项目分享) 高血压作为一种极为常见的慢性疾病,正严重威胁着大众健康。它的发病机制较为复杂,涉及多个方面的因素。 在一份临床采集的数据的基础上,我们通过数据分析手段深入观察一下 BMI…...
java集合框架之Map系列
前言 首先从最常用的HashMap开始。HashMap是基于哈希表实现的,使用数组和链表(或红黑树)的结构。在Java 8之后,当链表长度超过阈值时会转换为红黑树,以提高查询效率。哈希冲突通过链地址法解决。需要明确的是ÿ…...
android设置添加设备QR码信息
摘要:客户衍生需求,通过扫QR码快速获取设备基础信息,并且基于POS SDK进行打印。 1. 定位至device info的xml添加相关perference Index: vendor/mediatek/proprietary/packages/apps/MtkSettings/res/xml/my_device_info.xml--- vendor/medi…...
Python实现微博关键词爬虫
1.背景介绍 随着社交媒体的广泛应用,微博上的海量数据成为了很多研究和分析的重要信息源。为了方便获取微博的相关内容,本文将介绍如何使用Python编写一个简单的爬虫脚本,从微博中抓取指定关键词的相关数据,并将这些数据保存为Ex…...
linux概念详解
用户守护进程 用户空间守护进程是一些在后台运行的长期服务程序,提供系统级服务。 下面举一些例子。 网络服务: 如sshd(SSH服务)、httpd(HTTP服务)。 sshd:sshd 守护进程会在后台运行&#x…...
【设计模式】-工厂模式(简单工厂、工厂方法、抽象工厂)
工厂模式(简单工厂、工厂方法、抽象工厂) 介绍 简单工厂模式 简单工厂模式不属于23种GoF设计模式之一,但它是一种常见的设计模式。它提供了一种创建对象的接口,但由子类决定要实例化的类是哪一个。这样,工厂方法模式让类的实例化推迟到子类…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面
代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...
Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
