使用 GPT-SoVITS 克隆声音,很详细
使用 GPT-SoVITS 克隆声音,很详细
- 一、前言
- 二、下载
- 三、启动
- 四、克隆声音
- 1、准备克隆音频
- 2、分离人声伴奏
- 3、音频分割
- 4、语音降噪
- 5、ASR工具
- 6、语音文本校对标注工具
- 7、训练模型
- 8、微调训练
- 9、推理
一、前言
最近对文本转语言很感兴趣,但对直接在网站上生成的音频音色却不是很满意,经过一番寻找,发现了“GPT-SoVITS” ,对想要的声音进行克隆。
二、下载
可以到这里下载

下载后解压即可
这里将其解压到如下目录:
E:\software\gpt-sovits

三、启动
进入“安装目录\GPT-SoVITS-v2-240821\GPT-SoVITS-v2-240821”
双击“go-webui.bat”即可

会出现一个黑窗口

启动成功会打开浏览器跳转到这个页面

四、克隆声音
1、准备克隆音频
先准备好想要提起的声音,这里以克隆芭芭拉的声音为例

可以到这里下载原音频
下载后将其放到某个文件夹中,这里放到
F:\file\GptSovitsFile\sucai\芭芭拉
2、分离人声伴奏
回到“GPT-SoVITS”中,点击开启“UVR5-WebUI”

稍等一会儿后会跳转到新的页面

选择模型,一般选择“HP2_all_vocals”即可,也可以阅读上方解释,选择适合自己的模型
模型介绍:
HP2_all vocals:人声伴奏分离模型,提取音频中所有人声部分和背景音部分。HP5_only_main_vocal:提取音频中的主唱人声,排除和声和伴唱,适合处理歌曲。model_bs_roformer_ep_317_sdr_12.9755:去掉混音中的干扰成分,增强信噪比。onnx_dereverb_By_FoxJoy:去混响模型,减少音频中由于环境回声或混响造成的声音模糊。VR-DeEchoAggressive:去回声模型,针对严重的回声进行处理,偏向“激进处理”。VR-DeEchoDeReverb:结合去回声和去混响的双重功能,处理音频中的回声和混响问题。VR-DeEchoNormal:去回声模型,适用于一般程度的回声处理,偏向“温和处理”。

接着输入存放待分离音频路径,前面已经提到将其放到
F:\file\GptSovitsFile\sucai\芭芭拉

指定输出主人声文件夹和指定输出非主人声文件夹保持默认即可

分类之后会保存在“安装目录\GPT-SoVITS-v2-240821\GPT-SoVITS-v2-240821\output\uvr5_opt”

再选择导出文件格式,这里选择 wav

最后点击转换

看到成功的信息表示转换完成

再查看输出目录 uvr5_opt

两条音频都试听一下,找出人声音频,因为要克隆声音,伴奏音频没用,这里将其删除了

这时就可以回到主界面,关闭“UVR5-WebUI”

3、音频分割
这里主要针对长音频,如果音频本来就不长,就不需要分割了
回到这界面,已知上面分离的音频保存在“安装目录\GPT-SoVITS-v2-240821\GPT-SoVITS-v2-240821\output\uvr5_opt”路径
这里路径为:
E:\software\gpt-sovits\GPT-SoVITS-v2-240821\GPT-SoVITS-v2-240821\output\uvr5_opt
将文件夹路径放到切分输入路径

点击开启语言切割

看到输出信息显示“切割结束”表示切割完成

4、语音降噪
主要是处理有杂音的音频,如果音频干净可不降噪,直接点击“开启语言降噪即可”

看到降噪输出信息提示降噪完成即可

完成后可在“output”下生成“denoise_opt”文件夹

里面就是降噪的音频

原来的音频就干净,降噪后对比原音频只是小声了点
5、ASR工具
这一步主要是生成带时间戳的文本,如果需要的是中文,默认即可。
点击“开启离线批量ASR”

看到输出提示完成即可

生成文件在“asr_opt”文件夹


文件内容如下

6、语音文本校对标注工具
这一步主要是校对文本 ASR 工具生成的文本是否正确,对错误的文本进行修改。
保持默认,点击“开启打标WebUI”即可

会跳转到一个新的页面

因为音频比较短,这里只有一段文本如果音频较长,这里是有多段文本的
检查文本框中的文本是否正确,不正确则进行修改,为了防止出错,建议修改一段点一下“Submit Text”

这里原文本为:
你喜欢麻辣小鱼干吗?我这还有两条,那给你一条。
将其改为:
你喜欢麻辣小鱼干吗?我这还有两条,呐~给你一条。
确认无误之后回到主界面,点击“关闭打标WebUI”

7、训练模型
承接上面,将主界面拉到最顶部,选择“1-GPT-SoVITS-TTS”

为你的模型取一个名字,这里取名“bbl”

其他不用修改,拉到最下面,点击“开启一键三连”

看到结束的提示即可

这一步是把你的声音样本转换成项目训练模型支持的特定格式,会在日志文件夹“logs”下生成以前面模型命名的文件夹(bbl)

里面文件如下

8、微调训练
承接上面的主界面,网上拉到命名模型那一部分,点击“1B-微调训练”

参数默认即可,先“开启SoVITS”

等待训练完成

因为本次使用的是“v2”版本的“GPT-SoVITS”,生成的模型保存在“安装目录\GPT-SoVITS-v2-240821\GPT-SoVITS-v2-240821\SoVITS_weights_v2”

模型如下

为什么是两个模型?(总训练轮数)/(保存频率)
接着点击“开启GPT训练”

等待训练完成

因为本次使用的是“v2”版本的“GPT-SoVITS”,生成的模型保存在“安装目录\GPT-SoVITS-v2-240821\GPT-SoVITS-v2-240821\GPT_weights_v2”

模型如下

同样,三个模型是因为(总训练轮数)/(保存频率)
9、推理
承接上面的主页面,将其往上拉到命名模型下方,点击“1C-推理”

选择GPT、SoVITS模型,如果没有看到就点击一下“刷新模型路径”

选择参数最大的模型,效果最好


勾选“启用并推理版本”,再点击“开启TTS推理WebUI”

会跳转到一个新页面

这是模型区,如果在主界面忘记选,可以在这里选,一般选择参数最大的,效果最好

这是推理区,可以将前面处理好的音频拖入,比如前面降噪后的音频

再加上音频台词,就是对应音频的台词
你喜欢麻辣小鱼干吗?我这还有两条,呐~给你一条。
最后在右边添加需要生成音频的文本,这里是:
从来生死都看淡

推理设置保持默认即可,点击“合成语音”就会生成对应音频

最后是文本切分区,如果文本很长,可以先放到左边,点击切分,切分方式保持默认,再将右边切分好的文本放到文本生成音频区域

相关文章:
使用 GPT-SoVITS 克隆声音,很详细
使用 GPT-SoVITS 克隆声音,很详细 一、前言二、下载三、启动四、克隆声音1、准备克隆音频2、分离人声伴奏3、音频分割4、语音降噪5、ASR工具6、语音文本校对标注工具7、训练模型8、微调训练9、推理 一、前言 最近对文本转语言很感兴趣,但对直接在网站上…...
Flask和Django相比哪个更适合新手?
Flask 与 Django:哪个更适合新手? 对于新手来说,选择 Flask 还是 Django 主要取决于你的具体需求和项目复杂度。以下是两者的详细对比,帮助你做出选择: 1. Flask 优点 简单易用:Flask 是一个轻量级的微框架,代码简洁,易于理解和上手。适合初学者快速入门。灵活性高:…...
2. 图片性能优化
图片性能优化 图片懒加载 如何判断图片出现在了当前视口 (即如何判断我们能够看到图片)如何控制图片的加载 原生实现 <img src"shanyue.jpg" loading"lazy" />loading"lazy" 延迟加载图像,直到它和视…...
多模态本地部署和ollama部署Llama-Vision实现视觉问答
文章目录 一、模型介绍二、预期用途1. 视觉问答(VQA)与视觉推理2. 文档视觉问答(DocVQA)3. 图像字幕4. 图像-文本检索5. 视觉接地 三、本地部署1. 下载模型2. 模型大小3. 运行代码 四、ollama部署1. 安装ollama2. 安装 Llama 3.2 Vision 模型3. 运行 Llama 3.2-Vision 五、效果…...
cuML机器学习GPU库
cuML安装官网:Installation Guide - RAPIDS Docs 转载:Linux下cuML库的安装与Jupyter集成调试教程-CSDN博客...
机器学习数学基础:24.随机事件与概率
一、教程目标 本教程致力于帮助零基础或基础薄弱的学习者,全面掌握概率论与数理统计的基础公式,透彻理解核心概念,熟练学会应用解题技巧,最终能够轻松应对期末或考研考试。 二、适用人群 特别适合那些对概率论与数理统计知识了…...
CAS单点登录(第7版)27.开发人员
如有疑问,请看视频:CAS单点登录(第7版) 开发人员 Javadocs文档 group org.apereo.cas has published 42 artifact(s) with total 8210 version(s) org.apereo.cas org apereo.cas 小组已出版 42 件作品,共 8210 个版…...
DeepSeek+即梦 做AI视频
DeepSeek做AI视频 制作流程第一步:DeepSeek 生成视频脚本和分镜 第二步:生成分镜图片绘画提示词第三步:生成分镜图片第四步:使用可灵 AI 工具,将生成的图片转成视频。第五步:剪映成短视频 DeepSeek 真的强&…...
OpenMetadata 获取 MySQL 数据库表血缘关系详解
概述 OpenMetadata 是一个开源的元数据管理平台,支持端到端的血缘关系追踪。对于 MySQL 数据库,OpenMetadata 通过解析表的外键约束、视图定义及查询日志(可选)构建表级血缘。本文结合源码分析其实现机制。 环境配置与数据摄取 1. 配置文件示例(YAML) source:type: my…...
计算机组成原理—— 总线系统(十二)
不要害怕失败,因为每一次跌倒都是站起来的前奏;不要畏惧未知,因为在探索的过程中你会发现未曾预见的美好。你的每一步努力都在为未来的成功铺路,即使现在看不到成果,但请相信积累的力量。那些看似平凡的努力࿰…...
详解如何使用Pytest内置Fixture tmp_path 管理临时文件
关注开源优测不迷路 大数据测试过程、策略及挑战 测试框架原理,构建成功的基石 在自动化测试工作之前,你应该知道的10条建议 在自动化测试中,重要的不是工具 临时目录在测试中起着至关重要的作用,它为执行和验证代码提供了一个可控…...
Banana Pi OpenWRT One 官方路由器的第一印象
OpenWRT One是OpenWRT开源社区推出的首款官方开发板,与Banana Pi社区共同设计,由Banana Pi制造和发行。路由器采用蓝色铝合金外壳,质感极佳,视觉效果远超宣传图。整体设计简洁,呈长方形,虽然不是特别时尚&a…...
Golang GORM系列:GORM事务及错误处理
在数据库管理领域,确保数据完整性至关重要。GORM是健壮的Go对象关系映射库,它为开发人员提供了维护数据一致性和优雅地处理错误的基本工具。本文是掌握GORM事务和错误处理的全面指南。我们将深入研究如何使用事务来保证原子性,并探索有效处理…...
NLLB 与 ChatGPT 双向优化:探索翻译模型与语言模型在小语种应用的融合策略
作者:来自 vivo 互联网算法团队- Huang Minghui 本文探讨了 NLLB 翻译模型与 ChatGPT 在小语种应用中的双向优化策略。首先介绍了 NLLB-200 的背景、数据、分词器和模型,以及其与 LLM(Large Language Model)的异同和协同关系。接着…...
ASP.NET Core SixLabors.ImageSharp v1.0 的图像实用程序类 web示例
这个小型实用程序库需要将 NuGet SixLabors.ImageSharp包(版本 1.0.4)添加到.NET Core 3.1/ .NET 6 / .NET 8项目中。它与Windows、Linux和 MacOS兼容。 这已针对 ImageSharp v3.0.1 进行了重新设计。 它可以根据百万像素数或长度乘以宽度来调整图像大…...
ffmpeg configure 研究1-命令行参数的分析
author: hjjdebug date: 2025年 02月 14日 星期五 17:16:12 CST description: ffmpeg configure 研究1 ./configure 命令行参数的分析 文章目录 1 configure 对命令行参数的分析,在4019行1.1 函数名称: is_in1.2. 函数名称: enable1.3. 函数名称: set_all 2 执行退出判断的关键…...
数据结构与算法之排序算法-归并排序
排序算法是数据结构与算法中最基本的算法之一,其作用就是将一些可以比较大小的数据进行有规律的排序,而想要实现这种排序就拥有很多种方法~ 那么我将通过几篇文章,将排序算法中各种算法细化的,详尽的为大家呈现出来: …...
高血压危险因素分析(项目分享)
高血压危险因素分析(项目分享) 高血压作为一种极为常见的慢性疾病,正严重威胁着大众健康。它的发病机制较为复杂,涉及多个方面的因素。 在一份临床采集的数据的基础上,我们通过数据分析手段深入观察一下 BMI…...
java集合框架之Map系列
前言 首先从最常用的HashMap开始。HashMap是基于哈希表实现的,使用数组和链表(或红黑树)的结构。在Java 8之后,当链表长度超过阈值时会转换为红黑树,以提高查询效率。哈希冲突通过链地址法解决。需要明确的是ÿ…...
android设置添加设备QR码信息
摘要:客户衍生需求,通过扫QR码快速获取设备基础信息,并且基于POS SDK进行打印。 1. 定位至device info的xml添加相关perference Index: vendor/mediatek/proprietary/packages/apps/MtkSettings/res/xml/my_device_info.xml--- vendor/medi…...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...
Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...
论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...
JVM 内存结构 详解
内存结构 运行时数据区: Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器: 线程私有,程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 每个线程都有一个程序计数…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
