当前位置: 首页 > news >正文

使用 GPT-SoVITS 克隆声音,很详细

使用 GPT-SoVITS 克隆声音,很详细

  • 一、前言
  • 二、下载
  • 三、启动
  • 四、克隆声音
    • 1、准备克隆音频
    • 2、分离人声伴奏
    • 3、音频分割
    • 4、语音降噪
    • 5、ASR工具
    • 6、语音文本校对标注工具
    • 7、训练模型
    • 8、微调训练
    • 9、推理

一、前言

最近对文本转语言很感兴趣,但对直接在网站上生成的音频音色却不是很满意,经过一番寻找,发现了“GPT-SoVITS” ,对想要的声音进行克隆。

二、下载

可以到这里下载

在这里插入图片描述

下载后解压即可

这里将其解压到如下目录:

E:\software\gpt-sovits

在这里插入图片描述

三、启动

进入“安装目录\GPT-SoVITS-v2-240821\GPT-SoVITS-v2-240821”

双击“go-webui.bat”即可
在这里插入图片描述

会出现一个黑窗口

在这里插入图片描述

启动成功会打开浏览器跳转到这个页面

在这里插入图片描述

四、克隆声音

1、准备克隆音频

先准备好想要提起的声音,这里以克隆芭芭拉的声音为例

在这里插入图片描述

可以到这里下载原音频

下载后将其放到某个文件夹中,这里放到

F:\file\GptSovitsFile\sucai\芭芭拉

2、分离人声伴奏

回到“GPT-SoVITS”中,点击开启“UVR5-WebUI”

在这里插入图片描述

稍等一会儿后会跳转到新的页面

在这里插入图片描述

选择模型,一般选择“HP2_all_vocals”即可,也可以阅读上方解释,选择适合自己的模型

模型介绍:

HP2_all vocals:人声伴奏分离模型,提取音频中所有人声部分和背景音部分。HP5_only_main_vocal:提取音频中的主唱人声,排除和声和伴唱,适合处理歌曲。model_bs_roformer_ep_317_sdr_12.9755:去掉混音中的干扰成分,增强信噪比。onnx_dereverb_By_FoxJoy:去混响模型,减少音频中由于环境回声或混响造成的声音模糊。VR-DeEchoAggressive:去回声模型,针对严重的回声进行处理,偏向“激进处理”。VR-DeEchoDeReverb:结合去回声和去混响的双重功能,处理音频中的回声和混响问题。VR-DeEchoNormal:去回声模型,适用于一般程度的回声处理,偏向“温和处理”。

在这里插入图片描述

接着输入存放待分离音频路径,前面已经提到将其放到

F:\file\GptSovitsFile\sucai\芭芭拉

在这里插入图片描述

指定输出主人声文件夹和指定输出非主人声文件夹保持默认即可

在这里插入图片描述

分类之后会保存在“安装目录\GPT-SoVITS-v2-240821\GPT-SoVITS-v2-240821\output\uvr5_opt”

在这里插入图片描述

再选择导出文件格式,这里选择 wav

在这里插入图片描述

最后点击转换

在这里插入图片描述

看到成功的信息表示转换完成

在这里插入图片描述

再查看输出目录 uvr5_opt

在这里插入图片描述

两条音频都试听一下,找出人声音频,因为要克隆声音,伴奏音频没用,这里将其删除了

在这里插入图片描述

这时就可以回到主界面,关闭“UVR5-WebUI”

在这里插入图片描述

3、音频分割

这里主要针对长音频,如果音频本来就不长,就不需要分割了

回到这界面,已知上面分离的音频保存在“安装目录\GPT-SoVITS-v2-240821\GPT-SoVITS-v2-240821\output\uvr5_opt”路径

这里路径为:

E:\software\gpt-sovits\GPT-SoVITS-v2-240821\GPT-SoVITS-v2-240821\output\uvr5_opt

将文件夹路径放到切分输入路径

在这里插入图片描述

点击开启语言切割

在这里插入图片描述

看到输出信息显示“切割结束”表示切割完成

在这里插入图片描述

4、语音降噪

主要是处理有杂音的音频,如果音频干净可不降噪,直接点击“开启语言降噪即可”

在这里插入图片描述

看到降噪输出信息提示降噪完成即可

在这里插入图片描述

完成后可在“output”下生成“denoise_opt”文件夹

在这里插入图片描述

里面就是降噪的音频

在这里插入图片描述

原来的音频就干净,降噪后对比原音频只是小声了点

5、ASR工具

这一步主要是生成带时间戳的文本,如果需要的是中文,默认即可。

点击“开启离线批量ASR”

在这里插入图片描述

看到输出提示完成即可

在这里插入图片描述

生成文件在“asr_opt”文件夹

在这里插入图片描述

在这里插入图片描述

文件内容如下

在这里插入图片描述

6、语音文本校对标注工具

这一步主要是校对文本 ASR 工具生成的文本是否正确,对错误的文本进行修改。

保持默认,点击“开启打标WebUI”即可

在这里插入图片描述

会跳转到一个新的页面

在这里插入图片描述

因为音频比较短,这里只有一段文本如果音频较长,这里是有多段文本的

检查文本框中的文本是否正确,不正确则进行修改,为了防止出错,建议修改一段点一下“Submit Text”

在这里插入图片描述

这里原文本为:

你喜欢麻辣小鱼干吗?我这还有两条,那给你一条。

将其改为:

你喜欢麻辣小鱼干吗?我这还有两条,呐~给你一条。

确认无误之后回到主界面,点击“关闭打标WebUI”

在这里插入图片描述

7、训练模型

承接上面,将主界面拉到最顶部,选择“1-GPT-SoVITS-TTS”

在这里插入图片描述

为你的模型取一个名字,这里取名“bbl”

在这里插入图片描述

其他不用修改,拉到最下面,点击“开启一键三连”

在这里插入图片描述

看到结束的提示即可

在这里插入图片描述

这一步是把你的声音样本转换成项目训练模型支持的特定格式,会在日志文件夹“logs”下生成以前面模型命名的文件夹(bbl)

在这里插入图片描述

里面文件如下

在这里插入图片描述

8、微调训练

承接上面的主界面,网上拉到命名模型那一部分,点击“1B-微调训练”

在这里插入图片描述

参数默认即可,先“开启SoVITS”

在这里插入图片描述

等待训练完成

在这里插入图片描述

因为本次使用的是“v2”版本的“GPT-SoVITS”,生成的模型保存在“安装目录\GPT-SoVITS-v2-240821\GPT-SoVITS-v2-240821\SoVITS_weights_v2”

在这里插入图片描述

模型如下

在这里插入图片描述

为什么是两个模型?(总训练轮数)/(保存频率)

接着点击“开启GPT训练”

在这里插入图片描述

等待训练完成

在这里插入图片描述

因为本次使用的是“v2”版本的“GPT-SoVITS”,生成的模型保存在“安装目录\GPT-SoVITS-v2-240821\GPT-SoVITS-v2-240821\GPT_weights_v2”

在这里插入图片描述

模型如下

在这里插入图片描述

同样,三个模型是因为(总训练轮数)/(保存频率)

9、推理

承接上面的主页面,将其往上拉到命名模型下方,点击“1C-推理”

在这里插入图片描述

选择GPT、SoVITS模型,如果没有看到就点击一下“刷新模型路径”

在这里插入图片描述

选择参数最大的模型,效果最好

在这里插入图片描述

在这里插入图片描述

勾选“启用并推理版本”,再点击“开启TTS推理WebUI”

在这里插入图片描述

会跳转到一个新页面

在这里插入图片描述

这是模型区,如果在主界面忘记选,可以在这里选,一般选择参数最大的,效果最好

在这里插入图片描述

这是推理区,可以将前面处理好的音频拖入,比如前面降噪后的音频

在这里插入图片描述

再加上音频台词,就是对应音频的台词

你喜欢麻辣小鱼干吗?我这还有两条,呐~给你一条。

最后在右边添加需要生成音频的文本,这里是:

从来生死都看淡

在这里插入图片描述

推理设置保持默认即可,点击“合成语音”就会生成对应音频

在这里插入图片描述

最后是文本切分区,如果文本很长,可以先放到左边,点击切分,切分方式保持默认,再将右边切分好的文本放到文本生成音频区域

在这里插入图片描述

相关文章:

使用 GPT-SoVITS 克隆声音,很详细

使用 GPT-SoVITS 克隆声音,很详细 一、前言二、下载三、启动四、克隆声音1、准备克隆音频2、分离人声伴奏3、音频分割4、语音降噪5、ASR工具6、语音文本校对标注工具7、训练模型8、微调训练9、推理 一、前言 最近对文本转语言很感兴趣,但对直接在网站上…...

Flask和Django相比哪个更适合新手?

Flask 与 Django:哪个更适合新手? 对于新手来说,选择 Flask 还是 Django 主要取决于你的具体需求和项目复杂度。以下是两者的详细对比,帮助你做出选择: 1. Flask 优点 简单易用:Flask 是一个轻量级的微框架,代码简洁,易于理解和上手。适合初学者快速入门。灵活性高:…...

2. 图片性能优化

图片性能优化 图片懒加载 如何判断图片出现在了当前视口 &#xff08;即如何判断我们能够看到图片&#xff09;如何控制图片的加载 原生实现 <img src"shanyue.jpg" loading"lazy" />loading"lazy" 延迟加载图像&#xff0c;直到它和视…...

多模态本地部署和ollama部署Llama-Vision实现视觉问答

文章目录 一、模型介绍二、预期用途1. 视觉问答(VQA)与视觉推理2. 文档视觉问答(DocVQA)3. 图像字幕4. 图像-文本检索5. 视觉接地 三、本地部署1. 下载模型2. 模型大小3. 运行代码 四、ollama部署1. 安装ollama2. 安装 Llama 3.2 Vision 模型3. 运行 Llama 3.2-Vision 五、效果…...

cuML机器学习GPU库

cuML安装官网&#xff1a;Installation Guide - RAPIDS Docs 转载&#xff1a;Linux下cuML库的安装与Jupyter集成调试教程-CSDN博客...

机器学习数学基础:24.随机事件与概率

一、教程目标 本教程致力于帮助零基础或基础薄弱的学习者&#xff0c;全面掌握概率论与数理统计的基础公式&#xff0c;透彻理解核心概念&#xff0c;熟练学会应用解题技巧&#xff0c;最终能够轻松应对期末或考研考试。 二、适用人群 特别适合那些对概率论与数理统计知识了…...

CAS单点登录(第7版)27.开发人员

如有疑问&#xff0c;请看视频&#xff1a;CAS单点登录&#xff08;第7版&#xff09; 开发人员 Javadocs文档 group org.apereo.cas has published 42 artifact(s) with total 8210 version(s) org.apereo.cas org apereo.cas 小组已出版 42 件作品&#xff0c;共 8210 个版…...

DeepSeek+即梦 做AI视频

DeepSeek做AI视频 制作流程第一步&#xff1a;DeepSeek 生成视频脚本和分镜 第二步&#xff1a;生成分镜图片绘画提示词第三步&#xff1a;生成分镜图片第四步&#xff1a;使用可灵 AI 工具&#xff0c;将生成的图片转成视频。第五步&#xff1a;剪映成短视频 DeepSeek 真的强&…...

OpenMetadata 获取 MySQL 数据库表血缘关系详解

概述 OpenMetadata 是一个开源的元数据管理平台,支持端到端的血缘关系追踪。对于 MySQL 数据库,OpenMetadata 通过解析表的外键约束、视图定义及查询日志(可选)构建表级血缘。本文结合源码分析其实现机制。 环境配置与数据摄取 1. 配置文件示例(YAML) source:type: my…...

计算机组成原理—— 总线系统(十二)

不要害怕失败&#xff0c;因为每一次跌倒都是站起来的前奏&#xff1b;不要畏惧未知&#xff0c;因为在探索的过程中你会发现未曾预见的美好。你的每一步努力都在为未来的成功铺路&#xff0c;即使现在看不到成果&#xff0c;但请相信积累的力量。那些看似平凡的努力&#xff0…...

详解如何使用Pytest内置Fixture tmp_path 管理临时文件

关注开源优测不迷路 大数据测试过程、策略及挑战 测试框架原理&#xff0c;构建成功的基石 在自动化测试工作之前&#xff0c;你应该知道的10条建议 在自动化测试中&#xff0c;重要的不是工具 临时目录在测试中起着至关重要的作用&#xff0c;它为执行和验证代码提供了一个可控…...

Banana Pi OpenWRT One 官方路由器的第一印象

OpenWRT One是OpenWRT开源社区推出的首款官方开发板&#xff0c;与Banana Pi社区共同设计&#xff0c;由Banana Pi制造和发行。路由器采用蓝色铝合金外壳&#xff0c;质感极佳&#xff0c;视觉效果远超宣传图。整体设计简洁&#xff0c;呈长方形&#xff0c;虽然不是特别时尚&a…...

Golang GORM系列:GORM事务及错误处理

在数据库管理领域&#xff0c;确保数据完整性至关重要。GORM是健壮的Go对象关系映射库&#xff0c;它为开发人员提供了维护数据一致性和优雅地处理错误的基本工具。本文是掌握GORM事务和错误处理的全面指南。我们将深入研究如何使用事务来保证原子性&#xff0c;并探索有效处理…...

NLLB 与 ChatGPT 双向优化:探索翻译模型与语言模型在小语种应用的融合策略

作者&#xff1a;来自 vivo 互联网算法团队- Huang Minghui 本文探讨了 NLLB 翻译模型与 ChatGPT 在小语种应用中的双向优化策略。首先介绍了 NLLB-200 的背景、数据、分词器和模型&#xff0c;以及其与 LLM&#xff08;Large Language Model&#xff09;的异同和协同关系。接着…...

ASP.NET Core SixLabors.ImageSharp v1.0 的图像实用程序类 web示例

这个小型实用程序库需要将 NuGet SixLabors.ImageSharp包&#xff08;版本 1.0.4&#xff09;添加到.NET Core 3.1/ .NET 6 / .NET 8项目中。它与Windows、Linux和 MacOS兼容。 这已针对 ImageSharp v3.0.1 进行了重新设计。 它可以根据百万像素数或长度乘以宽度来调整图像大…...

ffmpeg configure 研究1-命令行参数的分析

author: hjjdebug date: 2025年 02月 14日 星期五 17:16:12 CST description: ffmpeg configure 研究1 ./configure 命令行参数的分析 文章目录 1 configure 对命令行参数的分析,在4019行1.1 函数名称: is_in1.2. 函数名称: enable1.3. 函数名称: set_all 2 执行退出判断的关键…...

数据结构与算法之排序算法-归并排序

排序算法是数据结构与算法中最基本的算法之一&#xff0c;其作用就是将一些可以比较大小的数据进行有规律的排序&#xff0c;而想要实现这种排序就拥有很多种方法~ 那么我将通过几篇文章&#xff0c;将排序算法中各种算法细化的&#xff0c;详尽的为大家呈现出来&#xff1a; …...

高血压危险因素分析(项目分享)

高血压危险因素分析&#xff08;项目分享&#xff09; 高血压作为一种极为常见的慢性疾病&#xff0c;正严重威胁着大众健康。它的发病机制较为复杂&#xff0c;涉及多个方面的因素。 在一份临床采集的数据的基础上&#xff0c;我们通过数据分析手段深入观察一下 BMI&#xf…...

java集合框架之Map系列

前言 首先从最常用的HashMap开始。HashMap是基于哈希表实现的&#xff0c;使用数组和链表&#xff08;或红黑树&#xff09;的结构。在Java 8之后&#xff0c;当链表长度超过阈值时会转换为红黑树&#xff0c;以提高查询效率。哈希冲突通过链地址法解决。需要明确的是&#xff…...

android设置添加设备QR码信息

摘要&#xff1a;客户衍生需求&#xff0c;通过扫QR码快速获取设备基础信息&#xff0c;并且基于POS SDK进行打印。 1. 定位至device info的xml添加相关perference Index: vendor/mediatek/proprietary/packages/apps/MtkSettings/res/xml/my_device_info.xml--- vendor/medi…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

FFmpeg avformat_open_input函数分析

函数内部的总体流程如下&#xff1a; avformat_open_input 精简后的代码如下&#xff1a; int avformat_open_input(AVFormatContext **ps, const char *filename,ff_const59 AVInputFormat *fmt, AVDictionary **options) {AVFormatContext *s *ps;int i, ret 0;AVDictio…...

快速排序算法改进:随机快排-荷兰国旗划分详解

随机快速排序-荷兰国旗划分算法详解 一、基础知识回顾1.1 快速排序简介1.2 荷兰国旗问题 二、随机快排 - 荷兰国旗划分原理2.1 随机化枢轴选择2.2 荷兰国旗划分过程2.3 结合随机快排与荷兰国旗划分 三、代码实现3.1 Python实现3.2 Java实现3.3 C实现 四、性能分析4.1 时间复杂度…...