当前位置: 首页 > news >正文

动态规划:解决复杂问题的高效策略

动态规划(Dynamic Programming,简称 DP)是一种在数学、管理科学、经济学、计算机科学等领域中广泛使用的算法设计技术。它通过将复杂问题分解为更简单的子问题,并通过存储子问题的解来避免重复计算,从而高效地解决问题。本文将深入探讨动态规划的基本原理、核心思想、应用实例以及如何设计动态规划算法。


一、什么是动态规划?

动态规划是一种自底向上的算法设计方法,用于解决具有重叠子问题最优子结构的优化问题。它的核心思想是将一个复杂问题分解为多个相互关联的子问题,通过求解这些子问题并存储其解,最终构建出原问题的最优解。

动态规划的名称来源于其“动态”地解决问题的过程——通过逐步构建解的过程,而不是一次性求解。


二、动态规划的核心概念

  1. 最优子结构(Optimal Substructure)
    如果一个复杂问题的最优解可以由其子问题的最优解组合而成,那么这个问题就具有最优子结构。换句话说,问题的最优解包含其子问题的最优解。

    示例:在斐波那契数列中,F(n) = F(n-1) + F(n-2),其中 F(n) 的值依赖于 F(n-1)F(n-2) 的值。因此,斐波那契数列问题具有最优子结构。

  2. 重叠子问题(Overlapping Subproblems)
    在递归求解过程中,如果相同的子问题被多次计算,那么这个问题就具有重叠子问题的特性。动态规划通过存储这些子问题的解(通常使用数组或表格),避免了重复计算,从而提高了算法的效率。

    示例:在递归计算斐波那契数列时,F(5) 会多次计算 F(3)F(2),这些子问题是重叠的。

  3. 状态和状态转移方程
    动态规划中的状态是指问题的一个特定阶段的解,而状态转移方程描述了如何从一个状态转移到另一个状态。状态转移方程是动态规划算法的核心,它决定了如何通过子问题的解构建出原问题的解。

    示例:在斐波那契数列中,状态可以表示为 dp[i],表示第 i 个斐波那契数。状态转移方程为 dp[i] = dp[i-1] + dp[i-2]


三、动态规划的解题步骤

  1. 定义状态
    确定问题的阶段和状态,定义状态变量(如 dp[i])来表示问题的某个阶段的解。

  2. 建立状态转移方程
    根据问题的性质,推导出状态之间的关系,建立状态转移方程。

  3. 初始化和边界条件
    确定动态规划数组的初始值和边界条件,这些值通常是问题的最简单情况。

  4. 填表顺序
    根据状态转移方程,确定填表的顺序。通常是从已知的状态向未知的状态逐步推进。

  5. 返回最终结果
    根据问题的要求,从动态规划表中提取最终结果。


四、动态规划的典型应用

  1. 斐波那契数列
    问题描述:计算第 n 个斐波那契数。
    状态定义dp[i] 表示第 i 个斐波那契数。
    状态转移方程dp[i] = dp[i-1] + dp[i-2]
    初始条件dp[0] = 0, dp[1] = 1
    代码实现

    Python复制

    def fibonacci(n):if n <= 1:return ndp = [0] * (n + 1)dp[0], dp[1] = 0, 1for i in range(2, n + 1):dp[i] = dp[i - 1] + dp[i - 2]return dp[n]
  2. 背包问题
    问题描述:给定一组物品,每个物品有重量和价值,确定在不超过背包容量的情况下,背包中物品的最大价值。
    状态定义dp[i][j] 表示前 i 个物品在容量为 j 的背包中的最大价值。
    状态转移方程

    dp[i][j] = max(dp[i-1][j], dp[i-1][j-weight[i]] + value[i])

    初始条件dp[0][j] = 0(没有物品时价值为 0)。
    代码实现

    Python复制

    def knapsack(weights, values, capacity):n = len(weights)dp = [[0] * (capacity + 1) for _ in range(n + 1)]for i in range(1, n + 1):for j in range(1, capacity + 1):if weights[i - 1] <= j:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weights[i - 1]] + values[i - 1])else:dp[i][j] = dp[i - 1][j]return dp[n][capacity]
  3. 最长递增子序列(LIS)
    问题描述:给定一个序列,找到其中最长的递增子序列的长度。
    状态定义dp[i] 表示以第 i 个元素结尾的最长递增子序列的长度。
    状态转移方程

    dp[i] = max(dp[j] + 1) for all j < i and arr[j] < arr[i]

    初始条件dp[i] = 1(每个元素自身可以构成长度为 1 的递增子序列)。
    代码实现

    Python复制

    def longest_increasing_subsequence(arr):n = len(arr)dp = [1] * nfor i in range(1, n):for j in range(i):if arr[i] > arr[j]:dp[i] = max(dp[i], dp[j] + 1)return max(dp)
  4. 编辑距离(Levenshtein Distance)
    问题描述:计算将一个字符串转换为另一个字符串所需的最少操作次数(插入、删除、替换)。
    状态定义dp[i][j] 表示将字符串 s1 的前 i 个字符转换为字符串 s2 的前 j 个字符所需的最少操作次数。
    状态转移方程

    dp[i][j] = min(dp[i-1][j] + 1, dp[i][j-1] + 1, dp[i-1][j-1] + cost)

    其中,cost 为 0(字符相同)或 1(字符不同)。
    初始条件dp[0][j] = jdp[i][0] = i
    代码实现

    Python复制

    def edit_distance(s1, s2):m, n = len(s1), len(s2)dp = [[0] * (n + 1) for _ in range(m + 1)]for i in range(m + 1):dp[i][0] = ifor j in range(n + 1):dp[0][j] = jfor i in range(1, m + 1):for j in range(1, n + 1):cost = 0 if s1[i - 1] == s2[j - 1] else 1dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1, dp[i - 1][j - 1] + cost)return dp[m][n]

五、动态规划的优缺点

优点

  1. 高效性:通过存储子问题的解,避免了重复计算,显著提高了算法的效率。

  2. 适用性强:适用于多种优化问题,尤其是具有重叠子问题和最优子结构的问题。

  3. 可扩展性:动态规划算法通常可以扩展到更复杂的问题变种。

缺点

  1. 空间复杂度高:需要存储所有子问题的解,可能会占用较大的内存空间。

  2. 设计难度大:设计动态规划算法需要

相关文章:

动态规划:解决复杂问题的高效策略

动态规划&#xff08;Dynamic Programming&#xff0c;简称 DP&#xff09;是一种在数学、管理科学、经济学、计算机科学等领域中广泛使用的算法设计技术。它通过将复杂问题分解为更简单的子问题&#xff0c;并通过存储子问题的解来避免重复计算&#xff0c;从而高效地解决问题…...

【kafka系列】Kafka事务的实现原理

目录 1. 事务核心组件 1.1 幂等性生产者&#xff08;Idempotent Producer&#xff09; 1.2 事务协调器&#xff08;TransactionCoordinator&#xff09; 1.3 事务日志&#xff08;Transaction Log&#xff09; 2. 事务执行流程 2.1 事务初始化 2.2 发送消息 2.3 事务提…...

网络将内网服务转换到公网上

当然&#xff0c;以下是根据您提供的描述&#xff0c;对内网端口在公网上转换过程的详细步骤&#xff0c;并附上具体例子进行说明&#xff1a; 内网端口在公网上的转换过程详细步骤 1. 内网服务配置 步骤说明&#xff1a; 在内网中的某台计算机&#xff08;我们称之为“内网…...

c#自动更新-源码

软件维护与升级 修复漏洞和缺陷&#xff1a;软件在使用过程中可能会发现各种漏洞和缺陷&#xff0c;自动更新可以及时推送修复程序&#xff0c;增强软件的稳定性和安全性&#xff0c;避免因漏洞被利用而导致数据泄露、系统崩溃等问题。提升性能&#xff1a;通过自动更新&#x…...

爬虫实战:利用代理ip爬取推特网站数据

引言 亮数据-网络IP代理及全网数据一站式服务商屡获殊荣的代理网络、强大的数据挖掘工具和现成可用的数据集。亮数据&#xff1a;网络数据平台领航者https://www.bright.cn/?promoRESIYEAR50/?utm_sourcebrand&utm_campaignbrnd-mkt_cn_csdn_yingjie202502 在跨境电商、社…...

git使用,注意空格

第一节 安装完成后&#xff0c;找个目录用于存储,打开目录右击选择git bash here 命令1 姓名 回车 git config --global user.name "li" 命令2 邮箱 回车 git config --global user.email "888163.com" 命令3 初始化新仓库&#xff0c;下载克隆 回…...

138,【5】buuctf web [RootersCTF2019]I_<3_Flask

进入靶场 这段代码是利用 Python 的类继承和反射机制来尝试执行系统命令读取flag.txt文件内容 .__class__&#xff1a;空字符串对象调用__class__属性&#xff0c;得到str类&#xff0c;即字符串的类型。__class__.__base__&#xff1a;str类的__base__属性指向其基类&#xf…...

docker 运行 芋道微服务

创建文件夹 docker-ai 文件夹下放入需要jar包的文件夹及 docker-compose.yml 文件 docker-compose.yml 内容&#xff1a;我这里的是ai服务&#xff0c;所以将原先的文件内容做了变更&#xff0c;你们需要用到什么服务就在下面文件中进行更改即可 version: 3 services:yudao-g…...

C++ Primer 函数重载

欢迎阅读我的 【CPrimer】专栏 专栏简介&#xff1a;本专栏主要面向C初学者&#xff0c;解释C的一些基本概念和基础语言特性&#xff0c;涉及C标准库的用法&#xff0c;面向对象特性&#xff0c;泛型特性高级用法。通过使用标准库中定义的抽象设施&#xff0c;使你更加适应高级…...

【Rust中级教程】1.6. 内存 Pt.4:静态(static)内存与‘static生命周期标注

喜欢的话别忘了点赞、收藏加关注哦&#xff08;加关注即可阅读全文&#xff09;&#xff0c;对接下来的教程有兴趣的可以关注专栏。谢谢喵&#xff01;(&#xff65;ω&#xff65;) 1.6.1. 静态(static)内存 static内存实际上是一个统称&#xff0c;它指的是程序编译后的文…...

【设计模式】【行为型模式】解释器模式(Interpreter)

&#x1f44b;hi&#xff0c;我不是一名外包公司的员工&#xff0c;也不会偷吃茶水间的零食&#xff0c;我的梦想是能写高端CRUD &#x1f525; 2025本人正在沉淀中… 博客更新速度 &#x1f44d; 欢迎点赞、收藏、关注&#xff0c;跟上我的更新节奏 &#x1f3b5; 当你的天空突…...

修改OnlyOffice编辑器默认字体

通过Docker修改OnlyOffice编辑器默认字体 问题描述详细方案1. 删除原生字体文件2. 创建字体目录3. 复制字体文件到容器中4. 执行字体更新脚本5. 重新启动容器 注意事项 问题描述 在OnlyOffice中&#xff0c;编辑器的默认字体可能不符合公司或个人的需求&#xff0c;通常会使用…...

React echarts柱状图点击某个柱子跳转页面

绘制echarts柱状图 在 ECharts 中&#xff0c;如果你想要在点击柱状图的某个柱子时进行页面跳转&#xff0c;你可以通过设置 series 中的 data 属性中的 itemStyle 或者使用 series 的 label 属性中的 emphasis 属性来实现。但是&#xff0c;直接在柱状图中实现点击跳转通常涉…...

wordpress主题插件开发中高频使用的38个函数

核心模板函数 get_header()/get_footer()/get_sidebar() – 加载模板部件 the_title()/the_content()/the_excerpt() – 显示文章标题、内容、摘要 the_post() – 循环中获取文章数据 bloginfo(‘url’) – 获取站点URL wp_head()/wp_footer() – 输出头部/尾部代码 wp_n…...

ElasticSearch基础和使用

ElasticSearch基础 1 初识ES相关组件 &#xff08;1&#xff09;Elasticsearch是一款非常强大的开源搜索引擎&#xff0c;可以帮助我们从海量数据中快速找到需要的内容。Elasticsearch结合kibana、Logstash、Beats组件 也就是elastic stack&#xff08;ELK&#xff09; 广泛应…...

qt-C++笔记之QGraphicsScene和 QGraphicsView中setScene、通过scene得到view、通过view得scene

qt-C++笔记之QGraphicsScene和 QGraphicsView中setScene、通过scene得到view、通过view得scene code review! 文章目录 qt-C++笔记之QGraphicsScene和 QGraphicsView中setScene、通过scene得到view、通过view得scene1.`setScene` 方法2.通过 `scene` 获取它的视图 (`views()`)…...

小白win10安装并配置yt-dlp

需要yt-dlp和ffmpeg 注意存放路径最好都是全英文 win10安装并配置yt-dlp 一、下载1.下载yt-dlp2. fffmpeg下载 二、配置环境三、cmd操作四、yt-dlp下视频操作 一、下载 1.下载yt-dlp yt-dlp地址 找到win的压缩包点下载&#xff0c;并解压 2. fffmpeg下载 ffmpeg官方下载 …...

【kafka系列】broker

目录 Broker 接收生产者消息和返回消息给消费者的流程逻辑分析 Broker 处理生产者消息的核心流程 Broker 处理消费者消息的核心流程 关键点总结 Broker 接收生产者消息和返回消息给消费者的流程逻辑分析 Broker 处理生产者消息的核心流程 接收请求 Broker 的 SocketServer …...

用大模型学大模型05-线性回归

deepseek.com:多元线性回归的目标函数&#xff0c;损失函数&#xff0c;梯度下降 标量和矩阵形式的数学推导&#xff0c;pytorch真实能跑的代码案例以及模型,数据&#xff0c;预测结果的可视化展示&#xff0c; 模型应用场景和优缺点&#xff0c;及如何改进解决及改进方法数据推…...

Python实现AWS Fargate自动化部署系统

一、背景介绍 在现代云原生应用开发中,自动化部署是提高开发效率和保证部署质量的关键。AWS Fargate作为一项无服务器计算引擎,可以让我们专注于应用程序开发而无需管理底层基础设施。本文将详细介绍如何使用Python实现AWS Fargate的完整自动化部署流程。 © ivwdcwso (ID…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank&#xff1f;由于时间太久&#xff0c;我真忘记了。搜搜发现&#xff0c;还真有人和我一样。见下面的链接&#xff1a;https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发&#xff0c;实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构&#xff0c;服务器端使用Java Servlet处理请求&#xff0c;数据库采用MySQL存储信息&#xff0…...

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join

纯 Java 项目&#xff08;非 SpringBoot&#xff09;集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

【JavaSE】多线程基础学习笔记

多线程基础 -线程相关概念 程序&#xff08;Program&#xff09; 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序&#xff0c;比如我们使用QQ&#xff0c;就启动了一个进程&#xff0c;操作系统就会为该进程分配内存…...

淘宝扭蛋机小程序系统开发:打造互动性强的购物平台

淘宝扭蛋机小程序系统的开发&#xff0c;旨在打造一个互动性强的购物平台&#xff0c;让用户在购物的同时&#xff0c;能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机&#xff0c;实现旋转、抽拉等动作&#xff0c;增…...

数据结构:递归的种类(Types of Recursion)

目录 尾递归&#xff08;Tail Recursion&#xff09; 什么是 Loop&#xff08;循环&#xff09;&#xff1f; 复杂度分析 头递归&#xff08;Head Recursion&#xff09; 树形递归&#xff08;Tree Recursion&#xff09; 线性递归&#xff08;Linear Recursion&#xff09;…...

Monorepo架构: Nx Cloud 扩展能力与缓存加速

借助 Nx Cloud 实现项目协同与加速构建 1 &#xff09; 缓存工作原理分析 在了解了本地缓存和远程缓存之后&#xff0c;我们来探究缓存是如何工作的。以计算文件的哈希串为例&#xff0c;若后续运行任务时文件哈希串未变&#xff0c;系统会直接使用对应的输出和制品文件。 2 …...