当前位置: 首页 > news >正文

【算法与数据结构】并查集详解+题目

目录

一,什么是并查集

二,并查集的结构 

三,并查集的代码实现 

1,并查集的大致结构和初始化

2,find操作 

3,Union操作

4,优化 

小结:

四,并查集的应用场景

省份数量[OJ题] 


一,什么是并查集

核心概念:并查集是一种 用于管理元素分组 的数据结构。

在一些应用问题中,需将n个不同的元素划分成一些不相交的集合,开始时,n个元素各自成一个集合,然后按照一定规律将部分集合合成一个集合,也就是集合合并并查集(union-find)适合来描述这类问题。

对于并查集,我们可以将它看成是一个森林,森林是由多棵树组成的,并查集中的一个个集合就可以看作是树。

示例:

二,并查集的结构 

并查集的存储结构和树的双亲表示法相似。

所谓双亲表示法,就是在树的节点中,只存储父节点的指针,不存储孩子节点的指针。通过指针可以找到父节点。因为对于一颗树来说,可能有多个孩子 ,但只有一个父节点。

 

对于上图中:

节点0的数组值为-4,说明该节点为根节点。

节点6的数组值为0,说明该节点的父节点为0。

节点7的数组值为0,说明该节点的父节点为0。

节点8的数组值为0,说明该节点的父节点为0。

三,并查集的代码实现 

并查集主要支持一下操作:

  • 查询(find),查询一个元素在哪个集合中。
  • 合并(union),将两个集合合并为一个。

1,并查集的大致结构和初始化

class UnionFind
{
public:
    UnionFind(size_t n)
        :_ufs(n,-1)
    {}

    //......
private:
    vector<int> _ufs;
};

2,find操作 

在并查集中找到包含x的根

int findRoot(int x)
{
    int root = x;

    while (_ufs[root] >= 0)
        root = _ufs[root];

    return root;
}
 

3,Union操作

合并两个集合

void Union(int x1, int x2)
{
    int root1 = findRoot(x1);
    int root2 = findRoot(x2);
    if (root1 == root2)
        return; //在同一个集合中

    //这里在合并的时候采用数据量小的向数据量大的合并
    //也就是小树向大树合并
    if (abs(_ufs[root1]) < abs(_ufs[root2]))//root1节点更少
    {
        _ufs[root2] += _ufs[root1];
        _ufs[root1] = root2;   //小树合并到大树
    }
    else
    {
        //root2节点更少
        _ufs[root1] += _ufs[root2];
        _ufs[root2] = root1;
    }
}

4,优化 

当树比较高时,我们在反复查某个节点的根节点时,每次都会花费大量时间。

优化方法路径压缩,只要查找某个节点一次,就将查找路径上的所有节点挂到根节点下面。

如图:查找D的根A,查找路径上包含节点B,将节点D和节点B直接挂在根节点A的下面。

//路径压缩
int findRoot(int x)
{int root = x;while (_ufs[root] >= 0)root = _ufs[root];//路径压缩while (_ufs[x] >= 0){int parent = _ufs[x];_ufs[x] = root;   //挂在根节点的下面x = parent;}return root;
}

小结:

上述实现的并查集,支持连续元素。如果是处理非连续元素,需要使用哈希表代替数组(需额处理元素与索引的映射)。

核心思路:

  • 哈希映射unordered_map将任意类型元素映射为连续整数ID,内部用数组管理父节点
  • 动态扩容:自动添加新元素,无需预先指定规模。

  • 模板化:支持泛型数据类型(如string等)。

四,并查集的应用场景

  1. 连通性检测:判断网络中两个节点是否连通。

  2. 最小生成树(Kruskal算法):动态合并边,避免环。

  3. 社交网络分组:快速合并好友关系,查询是否属于同一社交圈。

总结:

并查集通过高效的查找与合并操作,成为处理动态连通性问题的核心数据结构。其优化方法(路径压缩、按秩合并)确保了接近常数的单次操作时间复杂度,适用于大规模数据场景。

其中的按秩合并就是合并集合时小树向大树合并。

省份数量[OJ题] 

题目链接:LCR 116. 省份数量 - 力扣(LeetCode)

 isConnected[i][j]=1,表示城市i和j连通,连通的城市为一个省份。用并查集将连通的数据放入一个集合,再统计最后的集合个数即可。

class Solution {
public:int findCircleNum(vector<vector<int>>& isConnected) {int n=isConnected.size();vector<int> _ufs(n,-1);//查找根auto find=[&](int x)->int{int root=x;while(_ufs[root]>=0)root=_ufs[root];return root;};for(int i=0;i<n;i++)for(int j=0;j<n;j++){if(isConnected[i][j]==1){//合并i和j集合int rooti=find(i),rootj=find(j);if(rooti!=rootj){_ufs[rooti]+=_ufs[rootj];_ufs[rootj]=rooti;}}}//统计集合数int ret=0;for(auto x:_ufs){if(x<0)ret++;}return ret;}
};

冗余连接[OJ题]

题目链接:684. 冗余连接 - 力扣(LeetCode)

class Solution {
public:vector<int> findRedundantConnection(vector<vector<int>>& edges) {//遍历edges数组//将在同一条边中的两个顶点放入一个集合//如果这条边的两个顶点已经在同一个集合中,加入这条边后,会出现环 ,返回这条边vector<int> ufs(1010);int sz=edges.size();//初始化时各元素自成一个集合,自己就是根for(int i=0;i<sz;i++)ufs[i]=i;for(int j=0;j<sz;j++){//找到边的两个顶点所在的集合,也就是根节点int root1=find(edges[j][0],ufs);int root2=find(edges[j][1],ufs);//如果在一个集合,加入这条边后,会出现环if(root1==root2)return edges[j];else{//两个集合独立,合并两个集合ufs[root1]=root2;}}return {0,0};}int find(int num,vector<int>& ufs){int root=num;while(ufs[root]!=root)root=ufs[root];return root;}
};

等式方程的可满足性[OJ题]

本题链接:990. 等式方程的可满足性 - 力扣(LeetCode)

class Solution {
public:bool equationsPossible(vector<string>& equations) {//并查集vector<int> ufs(26,-1);auto findroot=[&](int x){int parent=x;while(ufs[parent]>=0)parent=ufs[parent];return parent;};//将相等的放入同一集合中for(auto& str:equations)if(str[1]=='='){int root1=findroot(str[0]-'a');int root2=findroot(str[3]-'a');if(root1!=root2){ufs[root1]+=ufs[root2];ufs[root2]=root1;}}//遇到!,如果在同一个集合,返回falsefor(auto& str:equations){if(str[1]=='!'){int root1=findroot(str[0]-'a');int root2=findroot(str[3]-'a');if(root1==root2)return false;}}return true;}
};

 

相关文章:

【算法与数据结构】并查集详解+题目

目录 一&#xff0c;什么是并查集 二&#xff0c;并查集的结构 三&#xff0c;并查集的代码实现 1&#xff0c;并查集的大致结构和初始化 2&#xff0c;find操作 3&#xff0c;Union操作 4&#xff0c;优化 小结&#xff1a; 四&#xff0c;并查集的应用场景 省份…...

【动态路由】系统web url整合系列【springcloud-gateway实现】【不改hosts文件版】组件一:多个Eureka路由过滤器

需求 实现URL web资源整合&#xff0c;实现使用一个web地址访问多个web资源 方案 本方案使用SpringCloud Gateway实现&#xff0c;不需要在hosts文件加添加域名映射&#xff08;也不需要定义一系列域名&#xff09;&#xff0c;通过url路径来将请求转发到不同的Web资源 如&…...

Mybatis-扩展功能

逻辑删除乐观锁 MyBatisPlus从入门到精通-3&#xff08;含mp代码生成器&#xff09; Db静态工具类 Spring依赖循环问题 代码生成器 MybatisPlus代码生成器 枚举处理器 我们这里用int来存储状态 需要注解&#xff0c;很不灵活 希望用枚举类来代替这个Integer 这样的话我…...

基于SpringBoot实现的大学社团平台系统实现功能六

一、前言介绍&#xff1a; 1.1 项目摘要 随着高校社团活动的日益丰富和多样化&#xff0c;学生对于社团管理和参与的需求也在不断增加。传统的社团管理方式往往存在效率低下、信息不透明等问题&#xff0c;无法满足现代学生对于便捷、高效社团管理的需求。因此&#xff0c;利…...

电子电气架构 --- 机器学习推动车载雷达的发展

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 简单,单纯,喜欢独处,独来独往,不易合同频过着接地气的生活,除了生存温饱问题之外,没有什么过多的欲望,表面看起来很高冷,内心热情,如果你身…...

python从入门到进去

python从入门到进去 第一章、软件和工具的安装一、安装 python 解释器二、安装 pycharm 第二章、初识 python一、注释可分三种二、打印输入语句三、变量1、基本数据类型1.1、整数数据类型 int1.2、浮点数数据类型 float1.3、布尔数据类型 boolean1.4、字符串数据类型 string 2、…...

智能化客户画像构建管理:AI视频监控在大型商场的技术

前言&#xff1a;某商家为了优化卖场服务与营销策略&#xff0c;希望通过非侵入式手段获取客户画像&#xff0c;不仅可以帮助卖场提升服务质量、优化营销策略&#xff0c;还能通过数据驱动的方式提升销售业绩和顾客满意度&#xff0c;为卖场的长期发展奠定坚实的基础。 具体需求…...

php 拼接字符串

php 拼接字符串 .连字符"Hello, $name" 双引号内会解析变量"Hello, {$name}Doe" 使用花括号可以更明确标识变量名sprintf("Hello, %s", $name) 使用sprintfheredoc语法&#xff0c;同样支持变量的解析$html <<<EOT <p>Hello, $…...

Deepseek实用万能提问模板

一&#xff0c;背景需求约束条件 背景:提供与问题相关的时间、地点、人物、事件等信息&#xff0c;帮助 DeepSeek 更好地理解问题的情境。 需求:清晰明确地阐述你希望 DeepSeek完成的任务或提供的信息。 约束条件:可根据具体情况&#xff0c;对回答的范围、格式、字数等进行…...

MySQL、MariaDB 和 TDSQL 的区别

MySQL、MariaDB 和 TDSQL 是三种不同的数据库管理系统&#xff0c;它们在设计理念、功能、性能和使用场景上有一些显著的区别。 以下是对这三者的详细比较和介绍。 1. MySQL 概述 类型&#xff1a;关系型数据库管理系统&#xff08;RDBMS&#xff09;。开发者&#xff1a;最…...

Android车机DIY开发之软件篇(十七) Android模拟器移植Automotive

AndroidProducts.mk 路径&#xff1a; /device/generic/goldfish/pc/AndroidProducts.mk sdk_pc_x86_64.mk路径&#xff1a; /device/generic/goldfish/pc/sdk_pc_x86_64.mk sdk_car_x86_64.mk路径&#xff1a; /device/generic/goldfish/car/sdk_car_x86_64.mk BoardConfig.mk…...

[Unity角色控制专题] (借助ai)详细解析官方第三人称控制器

首先模板链接在这里&#xff0c;你可以直接下载并导入unity即可查看官方为开发者写好一套控制器 本文的ai工具用到了豆包&#xff0c;其灵活程度很高&#xff0c;总结能力也强过我太多 因此大量使用&#xff0c;不喜勿喷 Starter Assets - ThirdPerson | Updates in new Charac…...

【数据结构基础_链表】

1、链表的定义 链表与数组的区分&#xff1a; 数组是一块连续的内存空间&#xff0c;有了这块内存空间的首地址&#xff0c;就能直接通过索引计算出任意位置的元素地址。 数组最大的优势是支持通过索引快速访问元素&#xff0c;而链表就不支持。链表不一样&#xff0c;一条链…...

Java 实现 Redis中的GEO数据结构

Java 实现 Redis中的GEO数据结构 LBS &#xff08;基于位置信息服务&#xff08;Location-Based Service&#xff0c;LBS&#xff09;&#xff09;应用访问的数据是和人 或物关联的一组经纬度信息&#xff0c;而且要能查询相邻的经纬度范围&#xff0c;GEO 就非常适合应用在 …...

PostgreSQL如何关闭自动commit

PostgreSQL如何关闭自动commit 在 PostgreSQL 中&#xff0c;默认情况下&#xff0c;每个 SQL 语句都会自动提交&#xff08;即 AUTOCOMMIT 是开启的&#xff09;。如果希望关闭自动提交&#xff0c;以便手动控制事务的提交和回滚&#xff0c;可以通过以下方法实现。 1 使用 …...

1、云原生写在前面

云原生技术是什么&#xff08;包含哪些组件&#xff09;&#xff1f;每个组件是负责什么&#xff1f;学习这些组件技术能解决什问题&#xff1f;哪些类企业需要用到&#xff1f; 这是标准系列的问题&#xff0c;通过 deepseek 的深度思考就能得到我们想要的易于理解的人话式的…...

Redis离线安装

Linux系统Centos安装部署Redis缓存插件 参考&#xff1a;Redis中文网&#xff1a; https://www.redis.net.cn/ 参考&#xff1a;RPM软件包下载地址&#xff1a; https://rpmfind.net/linux/RPM/index.html http://rpm.pbone.net/ https://mirrors.aliyun.com/centos/7/os…...

网络安全-攻击流程-应用层

应用层攻击针对OSI模型的第七层&#xff08;应用层&#xff09;&#xff0c;主要利用协议漏洞、业务逻辑缺陷或用户交互弱点&#xff0c;直接威胁Web应用、API、数据库等服务。以下是常见应用层攻击类型及其流程&#xff0c;以及防御措施&#xff1a; 1. SQL注入&#xff08;SQ…...

java八股文-spring

目录 1. spring基础 1.1 什么是Spring&#xff1f; 1.2 Spring有哪些优点&#xff1f; 1.3 Spring主要模块 1.4 Spring常用注解 1.5 Spring中Bean的作用域 1.6 Spring自动装配的方式 1.7 SpringBean的生命周期 1.8 多级缓存 1.9 循环依赖&#xff1f; 1 .8.1 原因 1.8…...

Jvascript网页设计案例:通过js实现一款密码强度检测,适用于等保测评整改

本文目录 前言功能预览样式特点总结&#xff1a;1. 整体视觉风格2. 密码输入框设计3. 强度指示条4. 结果文本与原因说明 功能特点总结&#xff1a;1. 密码强度检测2. 实时反馈机制3. 详细原因说明4. 视觉提示5. 交互体验优化 密码强度检测逻辑Html代码Javascript代码 前言 能满…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

Spring Security 认证流程——补充

一、认证流程概述 Spring Security 的认证流程基于 过滤器链&#xff08;Filter Chain&#xff09;&#xff0c;核心组件包括 UsernamePasswordAuthenticationFilter、AuthenticationManager、UserDetailsService 等。整个流程可分为以下步骤&#xff1a; 用户提交登录请求拦…...

如何配置一个sql server使得其它用户可以通过excel odbc获取数据

要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据&#xff0c;你需要完成以下配置步骤&#xff1a; ✅ 一、在 SQL Server 端配置&#xff08;服务器设置&#xff09; 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到&#xff1a;SQL Server 网络配…...

前端高频面试题2:浏览器/计算机网络

本专栏相关链接 前端高频面试题1&#xff1a;HTML/CSS 前端高频面试题2&#xff1a;浏览器/计算机网络 前端高频面试题3&#xff1a;JavaScript 1.什么是强缓存、协商缓存&#xff1f; 强缓存&#xff1a; 当浏览器请求资源时&#xff0c;首先检查本地缓存是否命中。如果命…...

Unity VR/MR开发-VR开发与传统3D开发的差异

视频讲解链接&#xff1a;【XR马斯维】VR/MR开发与传统3D开发的差异【UnityVR/MR开发教程--入门】_哔哩哔哩_bilibili...

DAY 26 函数专题1

函数定义与参数知识点回顾&#xff1a;1. 函数的定义2. 变量作用域&#xff1a;局部变量和全局变量3. 函数的参数类型&#xff1a;位置参数、默认参数、不定参数4. 传递参数的手段&#xff1a;关键词参数5 题目1&#xff1a;计算圆的面积 任务&#xff1a; 编写一…...

jdbc查询mysql数据库时,出现id顺序错误的情况

我在repository中的查询语句如下所示&#xff0c;即传入一个List<intager>的数据&#xff0c;返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致&#xff0c;会导致返回的id是从小到大排列的&#xff0c;但我不希望这样。 Query("SELECT NEW com…...