Flink提交pyflink任务
1.官方文档:
flink1.14:https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/deployment/cli/#submitting-pyflink-jobs
flink1.18:https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/deployment/cli/#submitting-pyflink-jobs
2.提交PyFlink作业 - Submitting PyFlink Jobs #
(1)环境检查
Currently, users are able to submit a PyFlink job via the CLI. It does not require to specify the JAR file path or the entry main class, which is different from the Java job submission.
官方翻译:当前用户可以通过命令行提交PyFlink作业。不要指定 jar 文件路径或者主类入口,跟Java作业提交不一样。
When submitting Python job via flink run, Flink will run the command “python”. Please run the following command to confirm that the python executable in current environment points to a supported Python version of 3.6+.
官方翻译:当使用 flink run 提交Python作业时,Flink会运行命令 python。请运行下面的命令确保Python可执行程序在当前环境中,并指向Python 3.6+ 版本。
$ python --version
the version printed here must be 3.6+
(2)运行PyFlink作业 - Run a PyFlink job
The following commands show different PyFlink job submission use-cases:
官方翻译:后续的命令展示了不同的PyFlink作业提交用例:
示例1:$ ./bin/flink run --python examples/python/table/word_count.py
Run a PyFlink job with additional source and resource files. Files specified in --pyFiles will be added to the PYTHONPATH and, therefore, available in the Python code.
官方翻译:使用额外的源和资源文件运行PyFlink作业。在 --pyFiles 指定的文件都会被加入到 PYTHONPATH 中,因此就在python代码中可用。
示例2:$ ./bin/flink run \--python examples/python/table/word_count.py \--pyFiles file:///user.txt,hdfs:///$namenode_address/username.txt
Run a PyFlink job which will reference Java UDF or external connectors. JAR file specified in --jarfile will be uploaded to the cluster.
官方翻译:运行引用了Java自定义函数或者外部连接器的PyFlink作业。在 --jarfile 后指定的 jar 文件将会被上传到集群。
示例3:$ ./bin/flink run \--python examples/python/table/word_count.py \--jarfile <jarFile>
Run a PyFlink job with pyFiles and the main entry module specified in --pyModule:
官方翻译:使用 pyFiles 选项运行PyFlink作业需要使用 --pyModule 参数指定主模块入口:
示例4:$ ./bin/flink run \--pyModule table.word_count \--pyFiles examples/python/table
Submit a PyFlink job on a specific JobManager running on host (adapt the command accordingly):
官方翻译:将PyFlink作业提交到指定的 JVM 上运行:
示例5:$ ./bin/flink run \--jobmanager <jobmanagerHost>:8081 \--python examples/python/table/word_count.py
Run a PyFlink job using a YARN cluster in Per-Job Mode:
官方翻译:使用以每作业模式的 YARN 集群运行PyFlink作业:
示例6:$ ./bin/flink run \--target yarn-per-job--python examples/python/table/word_count.py
Run a PyFlink application on a native Kubernetes cluster having the cluster ID , it requires a docker image with PyFlink installed, please refer to Enabling PyFlink in docker:
官方翻译:在指定集群标识的 Kubernetes 原生集群上运行PyFlink应用,需要一个PyFlink的容器镜像,请参考在容器里启用PyFlink:
示例7:$ ./bin/flink run-application \--target kubernetes-application \--parallelism 8 \-Dkubernetes.cluster-id=<ClusterId> \-Dtaskmanager.memory.process.size=4096m \-Dkubernetes.taskmanager.cpu=2 \-Dtaskmanager.numberOfTaskSlots=4 \-Dkubernetes.container.image=<PyFlinkImageName> \--pyModule word_count \--pyFiles /opt/flink/examples/python/table/word_count.py
相关文章:
Flink提交pyflink任务
1.官方文档: flink1.14:https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/deployment/cli/#submitting-pyflink-jobs flink1.18:https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/deployment/cli/#submitting-pyflink-jobs 2.提…...
对称算法模式之CTR
Note 计数器模式,通过加密递增计数器生成密钥流,后密钥流与明文分组异或得密文分组可并行性进行加密或者解密,性能较高明文可以是任意长度,不需要填充可以直接加密或解密指定块,块与块间不具有依赖关系 参数说明 任…...

Map 和 Set
目录 一、搜索 概念: 模型: 二、Map 编辑 1.Map 实例化: 2. Map的常见方法: 3.Map的常见方法演示: 1. put(K key, V value):添加键值对 3. containsKey(Object key):检查键是否存在 4.…...

STOMP协议
引用:https://blog.csdn.net/print_helloword/article/details/142597122 什么是STOMP协议 STOMP (simple text oriented messaging protocol): 一种简单的,基于文本的消息传输协议,,,最初是为了解决在消息队列中&am…...

手动埋点的demo
上代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>埋点示例</title> </head><b…...

大模型开发实战篇5:多模态--文生图模型API
大模型文生图是一种基于人工智能大模型的技术,能够将自然语言文本描述转化为对应的图像。目前非常火的AI大模型赛道,有很多公司在此赛道竞争。详情可看这篇文章。 今天我们来看下如何调用WebAPI来实现文生图功能。我们一般都会将OpenAI的接口࿰…...

【大模型】DeepSeek 高级提示词技巧使用详解
目录 一、前言 二、DeepSeek 通用提示词技巧 2.1 DeepSeek 通用提示词技巧总结 三、DeepSeek 进阶使用技巧 3.1 DeepSeek一个特定角色的人设 3.1.1 为DeepSeek设置角色操作案例一 3.1.2 为DeepSeek设置角色操作案例二 3.2 DeepSeek开放人设升级 3.2.1 特殊的人设&#…...
【第14章:神经符号集成与可解释AI—14.2 可解释AI技术:LIME、SHAP等的实现与应用案例】
在这里插入图片描述 凌晨三点的ICU病房,值班医生李主任盯着AI辅助诊断系统的红色警报——这套准确率高达95%的深度学习系统,突然建议对一位肾衰竭患者进行肝移植手术。正当医疗组陷入混乱时,李主任打开了系统的"解释模式",屏幕上立即跳出SHAP分析图:模型误将CT…...

Python中使用Minio实现图像或视频文件的存储
目录 一、Minio的基本介绍1.Minio是什么2.Minio的优势 二、使用步骤1.启动Minio2.创建桶3.在Python中使用Minio3.1安装并导入minio包3.2创建mino_utils工具类 三、操作演示1.引入minio_utils工具类2.上传视频文件3.获取视频文件 总结 一、Minio的基本介绍 1.Minio是什么 Mini…...
Kubernetes-master 组件
以下是Kubernetes Master Machine的组件。 etcd 它存储集群中每个节点可以使用的配置信息。它是一个高可用性键值存储,可以在多个节点之间分布。只有Kubernetes API服务器可以访问它,因为它可能具有一些敏感信息。这是一个分布式键值存储,所…...
人形机器人 - 仿生机器人核心技术与大小脑
以下是针对仿生机器人核心技术的结构化总结,涵盖通用核心技术与**“大脑-小脑”专用架构**两大方向: 一、机器人通用核心技术 这些技术是仿生机器人实现功能的基础,与生物体的“身体能力”对应: 1. 感知与交互技术 多模态传感器融合 视觉:3D视觉(如RGB-D相机)、动态目…...
OpenAI 快速入门
文章来源:OpenAI开发者平台 | OpenAI开发文档|OpenAI中文官方文档|ChatGPT中文版|ChatGPT教程 开发人员快速入门 了解如何发出您的第一个 API 请求。 OpenAI API 为最先进的 AI 模型提供了一个简单的接口,用于自然语言处理、图像生成、语义搜索和语音识…...

nginx 实战配置
一、配置一个默认80端口的,静态页面,路径是path1。 http://192.168.0.111/path1 , /path1路径指向linux的/data/index1.html vi /data/nginx-1.24.0/conf/nginx.conf 文件添加以下配置 location /path1 { alias /data/…...
WebMvcConfigurer 介绍
WebMvcConfigurer 介绍 1. 什么是WebMvcConfigurer 介绍2. WebMvcConfigurer接口常用的方法3. 使用WebMvcConfigurer实现跨域4. 使用WebMvcConfigurer配置拦截器5. 使用WebMvcConfigurer配置静态资源5.1 配置外部目录(本地文件系统)详细解释 6. 使用 Web…...

java05(类、泛型、JVM、线程)---java八股
类 Java中有哪些类加载器 JDK自带有三个类加载器:bootstrap ClassLoader、ExtClassLoader、AppClassLoader。 ●BootStrapClassLoader是ExtClassLoader的父类加载器,默认负责加载%JAVA_HOME%lib下的jar包和class文件。 ●ExtClassLoader是AppClassLoade…...

Python+appium实现自动化测试
目录 一、工具与环境准备 二、开始测试 1、插上手机,打开usb调试,选中文件传输,我这里用华为手机为例 2、启动Appium Server GUI编辑 3、启动 Inspector Session 4、录制脚本 使用Python和Appium进行自动化测试是一种常见的移动应用…...
Unity中如何判断URL是否为RTSP或RTMP流
技术背景 如何在Unity中判断一个字符串URL是否是RTSP或RTMP流。首先,RTSP通常以“rtsp://”开头,而RTMP则是“rtmp://”或者有时是“rtmps://”用于安全连接。 接下来,如何在C#中进行字符串的检查。最简单的方法应该是检查URL是否以这些协议…...

基于角色访问控制的UML 表示02
一个用户可以成为很多角色的成员,一个角色可以有许多用户。类似地,一个角色可以有多个权限,同一个权限可以被指派给多个角色。每个会话把一个用户和可能的许多角色联系起来。一个用户在激发他或她所属角色的某些子集时,建立了一个…...
【函数题】6-10 二分查找
6-10 二分查找 1 题目原文2 思路解析2.1 基本二分查找算法2.2 常用二分模板2.2.1 第一个大于等于目标值的元素下标2.2.2 第一个大于目标值的元素下标2.2.3 最后一个小于等于目标值的元素下标2.2.3 最后一个小于目标值的元素下标2.2.4 小结 3 代码实现3.1 本题代码实现3.1.1 递归…...

关于conda换镜像源,pip换源
目录 1. 查看当前下载源2. 添加镜像源2.1清华大学开源软件镜像站2.2上海交通大学开源镜像站2.3中国科学技术大学 3.删除镜像源4.删除所有镜像源,恢复默认5.什么是conda-forge6.pip换源 1. 查看当前下载源 conda config --show channels 如果发现多个 可以只保留1个…...

基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...

c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...

2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...

C++:多态机制详解
目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...

无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...