重新出发的LLM本地部署——DeepSeek加持下的Ollama+OpenWebUI快速部署
DeepSeek 这真的是太惊艳了,发布出来的模型这么能打,在线的版本使用起来也是丝滑连招,感觉效果比起之前一直用智谱 chatglm4 更好用,想着本地化部署一下。
本来以为,会和之前在开发测试 transformers 的模型和代码一样,需要自己去配置写 langchain 和 streamlit 的,但是看下来,实际上最简单并且家用的方法。
可以直接 Windows 装 Ollama ,Docker 化部署 OpenWebUI,就能够本地局域网使用了,于是开始配置部署,并进行下记录。
这份记录可能会随着本地配置的内容,调整一些细节,供各位看官参考。
CUDA
好久没有用自己的台式机显卡去做一些开发了,之前还是在用的CUDA11.0,担心是不是需要升级下,配合新的系统,所以直接下了12.6的CUDA包,安装并清理了历史CUDA环境
Ollama
ollama官网下载,window基本上是傻瓜式的
默认安装完了,在 C:\Users{your_user_name}\AppData\Local\Programs\Ollama下面,磁盘不够可以拷贝到其他盘,然后链接回来
mklink /D "C:\Users\{your_user_name}\AppData\Local\Programs\Ollama" "D:\software\Ollama"
打开一个命令窗口,输入ollama能看到帮助命令使用方式

我本地有一个2080TI的卡,Deepseek能跑到14b的模型

命令行输入

第一次开始时,会先去下载14b模型,稍微会慢一些
C盘空间不够,可以迁移走模型到其他盘,然后还是使用 mklink /D "C:\Users\{your_user_name}\.ollama" "{new_model_dir}"
这种启动下的 Ollama 对应的模型,会被加载到内存或者GPU中,退出后一定时间会自动回收资源,有自身的管理机制,这块可以再探索下;
这种命令行的交互方式肯定不是很爽,家庭用又没有可能无时无刻不命令窗进行,所以往下去部署 OpenWebUI
Docker Desktop
部署 OpenWebUI 有不少方法,有本地编译,python服务,容器化等,我这里用的是 docker 容器化的方法
需要先在 windows 中安装上 docker 环境
在 Docker Desktop 文档中去下载

下载完了 Docker Desktop Installer.exe 后,一路傻瓜式安装过去就行,最后启动的时候,可能会有各种问题,建议在网上找下资料确认下
我这里走的是把 wsl 升级到 wsl2 的路径,然后默认启动方式启动的
wsl --set-default-version 2
wsl --set-version Ubuntu-24.04 2
启动完成后,可以到命令行中,拉去 OpenWebUI 的镜像了

OpenWebUI
这个镜像,官网的文档在 github OpenWebUI 上面
明确的指出了,对于 Ollama 安装在本机时,用

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main
这个命令启动就够了
Ollama 和 OpenWebUI 靠的是 add host 关联的,在 OpenWebUI 的管理界面我们能看到相应的 Ollama 关联地址(如果你没有配置,你也可以手动去调整)

这里我顺手把 OpenAI API 关掉了,在其他所有内容都靠科学上网解决后,这里关掉 CloseAI 的 API,免得它还去调用
这样下来,我们想到于有了个管理用户,用户历史对话,模型权限等等的前后台服务界面,还能够基于自建的知识库去查询,省事了,就是不知道里面调整一些内容麻不麻烦(如联网查询等,TODO)
这之下,我们就能在家里面,基于本地部署的地址,去在同一个局域网(如同一WIFI)中,从各种终端的 Web 进入,本地化使用了
test 统信
这个纯粹试一下玩玩
找了台统信的电脑试了一下(4核32G),类似的本地已经预先安装了docker环境

就用了上面两个镜像
先启动 ollama
docker run -d -v /home/lenovo/volumes/ollama:/root/.ollama -p 11434:11434 --name ollama alpine/ollama
启动好了之后,进入容器,去执行 ollama run deepseek-r1:1.5b

这里我先预先下载了模型了
然后启动 open-webui
docker run -d -p 13000:8080 -v /home/lenovo/volumes/openwebui:/app/backend/data --name open-webui ghcr.io/open-webui/open-webui:main
这里映射到了13000上,查看对应容器的ip

可以登录 172.17.0.6:13000,初始化 admin 用户了
初始化完之后,上右上角点用户头像,进入管理员面板,配置下ollama 的连接(这里没固定ollama的docker ip,感兴趣可以去尝试下)

按照实际ip情况改一下ollama的连接
这样就能够看到模型了
直接CPU推理总体的性能不是很好,一个简单的推理耗时了7分钟

相关文章:
重新出发的LLM本地部署——DeepSeek加持下的Ollama+OpenWebUI快速部署
DeepSeek 这真的是太惊艳了,发布出来的模型这么能打,在线的版本使用起来也是丝滑连招,感觉效果比起之前一直用智谱 chatglm4 更好用,想着本地化部署一下。 本来以为,会和之前在开发测试 transformers 的模型和代码一样…...
【第3章:卷积神经网络(CNN)——3.5 CIFAR-10图像分类】
嘿,小伙伴们,今天咱们来聊聊一个超级酷炫的话题——卷积神经网络(CNN)及其在CIFAR-10图像分类中的应用。这不仅仅是一个技术话题,更是一场探索人工智能奥秘的旅程。准备好了吗?咱们这就发车! 一、CNN:人工智能的“千里眼” 首先,咱们得知道CNN是啥。CNN,全名Convol…...
Django后台新建管理员
在 Django 中,新建管理员用户通常涉及使用 Django 自带的命令行工具 manage.py。以下是具体步骤: 前提条件 Django 项目已创建:确保你已经创建了一个 Django 项目和应用。数据库已迁移:确保你已经运行了 python manage.py migra…...
【第12章:深度学习与伦理、隐私—12.2 数据隐私保护与差分隐私技术的实现与应用】
凌晨三点的数据中心,安全工程师老张盯着监控屏幕——某个医疗AI模型的训练日志显示,系统在保护隐私的同时竟然准确预测了罕见病的发病规律。这种看似魔法的技术背后,是一场持续了十五年的隐私保卫战。让我们掀开差分隐私的神秘面纱,看看这场革命如何重塑数据世界的游戏规则…...
索引----数据库
本博客全是来自于黑马程序员的mysql专题,我写的笔记 索引 是帮助Mysql高效获取数据的数据结构(有序) 数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,…...
【ISO 14229-1:2023 UDS诊断全量测试用例清单系列:第十七节】
ISO 14229-1:2023 UDS诊断服务测试用例全解析(InputOutputControl_0x2F服务) 作者:车端域控测试工程师 更新日期:2025年02月14日 关键词:UDS协议、0x2F服务、输入输出控制、ISO 14229-1:2023、ECU测试 一、服务功能概…...
nodejs:express + js-mdict 网页查询英汉词典,能显示图片
向 DeepSeek R1 提问: 我想写一个Web 前端网页,后台用 nodejs js-mdict , 实现在线查询英语单词,并能显示图片 1. 项目结构 首先,创建一个项目目录,结构如下: mydict-app/ ├── public/ │ ├── …...
matlab汽车动力学半车垂向振动模型
1、内容简介 matlab141-半车垂向振动模型 可以交流、咨询、答疑 2、内容说明 略 3、仿真分析 略 4、参考论文 略...
2025.2.16
Web [GDOUCTF 2023]泄露的伪装: 点进去看就是装神弄鬼,那就直接扫描 果然有东西 第一个是php代码 第二个是个文件 访问发现是一样的 分析一下:使用 file_get_contents($cxk) 函数读取 $cxk 变量中指定的 URL 或文件的内容。 如果读取的内…...
图像生成GAN和风格迁移
文章目录 摘要abstract1.生成对抗网络 GAN1.1 算法步骤 2.风格迁移2.1 损失函数2.2 论文阅读2.2.1 简介2.2.2 方法2.2.3 实验2.2.4 结论 3.总结 摘要 本周学习了生成对抗网络(GAN)与风格迁移技术在图像生成中的应用。首先介绍了GAN模型中生成器与判别器…...
【06】泛型
文章目录 泛型函数中的泛型结构体中的泛型结构体中的方法 枚举中的泛型 泛型 RUST通过在编译时对泛型代码的单态化(monomorphization)来保证运行效率。即,在编译时对泛型填充具体数据类型转换为特定代码进行编译。 由于RUST编译试图穷举所有…...
1-13 tortoiseGit忽略文件与文件夹
前言: 基于本人对小乌龟操作的学习和思考,仅供参考 1-1 忽略问价和文件夹 有时候我们的一些文件是不想要提交,那么我们可以使用stash的方式给这个文件添加忽略,那么我们现在来给这个实际操作创建一个操作的环境。 右键选中添加到忽…...
ASR强力模型「Whisper」:解密Whisper:AI驱动的语音识别新时代 -
解密Whisper:AI驱动的语音识别新时代 原创 AI小信 别慌G个PT 2024年10月18日 17:54 北京 ❝ 前两天分享了两个TTS模型,今天分享个ASR强力模型「Whisper」。Whisper是OpenAI开发的一个「ASR」(AutomatedSpeechRecognition,自动语音识别)开源模型…...
【机器学习】向量化使得简单线性回归性能提升
向量化使得简单线性回归性能提升 一、摘要二、向量化运算概述三、向量化运算在简单线性回归中的应用四、性能测试与结果分析 一、摘要 本文主要讲述了向量化运算在简单线性回归算法中的应用。通过回顾传统for循环方式实现的简单线性回归算法,介绍了如何通过最小二乘…...
【kafka系列】消费者
目录 获取消息 1. 消费者获取消息的流程逻辑分析 阶段一:消费者初始化 阶段二:分区分配与重平衡(Rebalance) 阶段三:消息拉取与处理 阶段四:偏移量提交 核心设计思想 2. 流程 关键点总结 常见参数…...
HackerRank C++面试,中等难度题目 - Attribute Parser
去除字符串首尾的空白字符(包括空格、制表符、换行符和回车符) void trim(string &s) {size_t start s.find_first_not_of(" \t\n\r");size_t end s.find_last_not_of(" \t\n\r");if (start string::npos) {s ""…...
【ARM】解决ArmDS Fast Models 中部分内核无法上电的问题
1、 文档目标 解决ArmDS Fast Models 中部分内核无法上电的问题。 2、 问题场景 在调用ArmDS的Fast Models中的Cortex-A55的模型,只有Core 0是上电状态,而Core 1处于掉电状态,如图2-1所示: 图2-1 3、软硬件环境 1)…...
节目选择器安卓软件编写(针对老年人)
文章目录 需求来源软件界面演示效果源码获取 对爬虫、逆向感兴趣的同学可以查看文章,一对一小班教学:https://blog.csdn.net/weixin_35770067/article/details/142514698 需求来源 由于现在的视频软件过于复杂,某客户想开发一个针对老年人、…...
蓝桥杯之图
图: 对于图来说,重点在于之后的最短路径算法,这边简单做一下了解即可 代码: #include<iostream> #include<string> #include<vector> #include<list> #include<queue> using namespace std; clas…...
中兴光猫修改SN,MAC,修改地区,异地注册,改桥接,路由拨号
前言 请先阅读上一篇博客获取到光猫超级密码电信光猫获取超级密码 电信光猫天翼网关4.0获取超级密码教程 四川电信光猫 中兴 F1855V2 ZXHN F1855V2 telent权限 实战 实测_天翼4.0光猫超级密码-CSDN博客 修改SN-修改地区,光猫异地注册,设置桥接模式&#…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...
10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
