李沐--动手学深度学习 序列模型
1.使用正弦函数和可加性噪声生成序列数据
import torch
from torch import nn
from d2l import torch as d2l#使用正弦函数和可加性噪声生成序列数据
T = 1000 #总共产生1000个点
time = torch.arange(1,T+1,dtype=torch.float32)
x = torch.sin(0.01*time) + torch.normal(0,0.2,(T,))
d2l.plot(time,[x],'time','x',xlim=[1,1000],figsize=(6,3))
d2l.plt.show()
#使用正弦函数和可加性噪声生成序列数据
2.训练
#将这个序列转换为模型的模型的特征-标签对。
#仅使用前600个“特征-标签”对进行训练。
tau = 4
features = torch.zeros((T-tau,tau))
for i in range(tau):features[:,i] = x[i:T-tau+i]
labels = x[tau:].reshape((-1,1))batch_size,n_train = 16,600
#只有前n_train个样本用于训练
train_iter = d2l.load_array((features[:n_train],labels[:n_train]),batch_size,is_train=True)#使用一个相当简单的架构训练模型:一个拥有两个全连接层的多层感知机,ReLU激活函数和平方损失。#初始化网络权重的函数
def init_weight(m):if type(m) == nn.Linear:nn.init.xavier_uniform_(m.weight)#一个简单的多层感知机
def get_net():net = nn.Sequential(nn.Linear(4,10),nn.ReLU(),nn.Linear(10,1))net.apply(init_weight)return net#平方损失。注意:MSELoss计算平方误差时不带系数1/2
loss = nn.MSELoss(reduction='none')#训练模型.与前面几节(如 3.3节)中的循环训练基本相同
def train(net, train_iter, loss, epochs, lr):trainer = torch.optim.Adam(net.parameters(), lr)for epoch in range(epochs):for X, y in train_iter:trainer.zero_grad()l = loss(net(X), y)l.sum().backward()trainer.step()print(f'epoch {epoch + 1}, 'f'loss: {d2l.evaluate_loss(net, train_iter, loss):f}')net = get_net()
train(net, train_iter, loss, 5, 0.01)
d2l.plt.show()

3.预测
(1)一步预测
#检查模型预测下一个时间步的能力, 也就是单步预测
onestep_preds = net(features)
d2l.plot([time,time[tau:]],[x.detach().numpy(),onestep_preds.detach().numpy()],'time','x',legend=['data','1-step preds'],xlim = [1,1000],figsize=(6,3))
d2l.plt.show()

(2)K步预测
#K步预测
multistep_preds = torch.zeros(T)
multistep_preds[: n_train + tau] = x[: n_train + tau]
for i in range(n_train + tau,T):multistep_preds[i] = net(multistep_preds[i-tau:i].reshape((1,-1)))
d2l.plot([time,time[tau:],time[n_train+tau:]],[x.detach().numpy(), onestep_preds.detach().numpy(),multistep_preds[n_train+tau:].detach().numpy()],'time','x',legend=['data','1-step preds','multistep preds'],xlim=[1,1000],figsize=(6,3))
d2l.plt.show()

(3)基于k = 1,4,16,64,通过对整个序列预测的计算,更仔细地看一下k步预测的困难。
#基于k = 1,4,16,64,通过对整个序列预测的计算,更仔细地看一下k步预测的困难。
max_steps = 64features = torch.zeros((T-tau-max_steps+1,tau+max_steps))
#列i(i<tau)是来自x的观测,其时间步从(i)到(i+T-tau-max_steps+1)
for i in range(tau):features[:,i] = x[i:i+T-tau-max_steps+1]
# 列i(i>=tau)是来自(i-tau+1)步的预测,其时间步从(i)到(i+T-tau-max_steps+1)
for i in range(tau,tau+max_steps):features[:,i] = net(features[:,i-tau:i]).reshape(-1)steps = (1,4,16,64)
d2l.plot([time[tau + i - 1: T - max_steps + i] for i in steps],[features[:, (tau + i - 1)].detach().numpy() for i in steps], 'time', 'x',legend=[f'{i}-step preds' for i in steps], xlim=[5, 1000],figsize=(6, 3))
d2l.plt.show()

相关文章:
李沐--动手学深度学习 序列模型
1.使用正弦函数和可加性噪声生成序列数据 import torch from torch import nn from d2l import torch as d2l#使用正弦函数和可加性噪声生成序列数据 T 1000 #总共产生1000个点 time torch.arange(1,T1,dtypetorch.float32) x torch.sin(0.01*time) torch.normal(0,0.2,(…...
数据分析、商业智能、业务分析三者之间的关系
商业智能 (Business Intelligence, BI)、业务分析 (Business Analytics, BA) 和数据分析 (Data Analytics, DA) 三者都与数据密切相关,但在目标、方法和应用上存在差异。为了能够清晰地解释,下面将从定义入手,然后阐述它们之间的联系和区别。…...
【Spring+MyBatis】留言墙的实现
目录 1. 添加依赖 2. 配置数据库 2.1 创建数据库与数据表 2.2 创建与数据库对应的实体类 3. 后端代码 3.1 目录结构 3.2 MessageController类 3.3 MessageService类 3.4 MessageMapper接口 4. 前端代码 5. 单元测试 5.1 后端接口测试 5.2 使用前端页面测试 在Spri…...
让编程变成一种享受-明基RD320U显示器
引言 作为一名有着多年JAVA开发经验的从业者,在工作过程中,显示器的重要性不言而喻。它不仅是我们与代码交互的窗口,更是影响工作效率和体验的关键因素。在多年的编程生涯中,我遇到过各种各样的问题。比如,在进行代码…...
【嵌入式Linux应用开发基础】fork()函数
目录 一、fork 函数概述 1.1. 函数作用 1.2. 函数原型与头文件 1.3. 返回值 1.4. 核心特性 二、父子进程的区别与联系 2.1. 相同点 2.2. 不同点 三、典型应用场景 3.1. 多任务处理 3.2. 守护进程创建 3.3. 执行外部程序 3.4. 并行计算 四、fork 函数的关键注意事…...
2024 年 CSDN 博客之星年度评选:技术创作与影响力的碰撞(统计时间2025-02-17 11:06:06)
摘要:在技术的海洋里,每一位博主都像是一座独特的灯塔,用自己创作的光芒照亮他人前行的道路。2024 年 CSDN 博客之星年度评选活动,正是对这些灯塔的一次盛大检阅,让我们看到了众多优秀博主在技术创作领域的卓越表现以及…...
串的基本操作--数据结构
目录 一、串的基本概述 二、串的存储结构 2.1定义属性存储结构 串长有两种表示方法: 1、用一个额外的变量length来存放串的长度; 2、串值后面加一个不计入串长的结束标记字符“\0”,此时的串长为隐含值。 2.2堆的顺序存储结构 三、串的基本操…...
Unity 命令行设置运行在指定的显卡上
设置运行在指定的显卡上 -force-device-index...
Dest1ny漏洞库: 美团代付微信小程序系统任意文件读取漏洞
大家好,今天是Dest1ny漏洞库的专题!! 会时不时发送新的漏洞资讯!! 大家多多关注,多多点赞!!! 0x01 产品简介 美团代付微信小程序系统是美团点评旗下的一款基于微信小程…...
设计模式:状态模式
状态机有3个要素:状态,事件,动作。 假如一个对象有3个状态:S1、S2、S3。影响状态的事件有3个:E1、E2、E3。每个状态下收到对应事件的时候,对象的动作为AXY。那么该对象的状态机就可以用如下表格来表示。S1收到事件E1的…...
【故障处理】- 执行命令crsctl query crs xxx一直hang
【故障处理】- 执行命令crsctl query crs xxx一直hang 一、概述二、故障处理三、解决方法 一、概述 Oracle RAC环境中,遇到执行crsctl query crs xxx等相关命令不返回任何结果,一直hang在那里。系统下执行命令ps -ef |grep crsctl query crs softwarever…...
Zabbix——监控Nginx
背景 在项目中使用Nginx之后,有时候我们需要知道Nginx具体的工作情况,这时候就需要使用zabbix进行Nginx的相关监控 这边我们有两种方法 使用普通的http请求的方式获取基本信息如果使用了Nginx Plus,就可以通过Nginx Plus的接口获取更多的信…...
开源工具推荐--思维导图、流程图等绘制
1. 前言 在工作中,经常要用到各种不同的工具,随着系统的升级,有些工具也在不断更新升级。这里收集整理一些好用的开源工具推荐,遵循以下一些基本原则:开源免费,商业工具的有效平替,轻量级&…...
【论文笔记】Transformer^2: 自适应大型语言模型
Code repo: https://github.com/SakanaAI/self-adaptive-llms 摘要 自适应大型语言模型(LLMs)旨在解决传统微调方法的挑战,这些方法通常计算密集且难以处理多样化的任务。本文介绍了Transformer(Transformer-Squared)…...
FFmpeg源码:av_strlcpy函数分析
一、引言 在C/C编程中经常会用到strcpy这个字符串复制函数。strcpy是C/C中的一个标准函数,可以把含有\0结束符的字符串复制到另一个地址空间。但是strcpy不会检查目标数组dst的大小是否足以容纳源字符串src,如果目标数组太小,将会导致缓冲区…...
Unity Shader学习6:多盏平行光+点光源 ( 逐像素 ) 前向渲染 (Built-In)
0 、分析 在前向渲染中,对于逐像素光源来说,①ForwardBase中只计算一个平行光,其他的光都是在FowardAdd中计算的,所以为了能够渲染出其他的光照,需要在第二个Pass中再来一遍光照计算。 而有所区别的操作是࿰…...
docker批量pull/save/load/tag/push镜像shell脚本
目录 注意: 脚本内容 执行效果 注意: 以下脚本为shell脚本通过docker/nerdctl进行镜像独立打包镜像的相关操作脚本内仓库信息和镜像存取路径需自行更改需自行创建images.txt并填写值,并且与脚本位于同级目录下 [rootmaster01 sulibao]# l…...
五十天精通硬件设计第32天-S参数
系列文章传送门 50天精通硬件设计第一天-总体规划-CSDN博客 目录 1. S参数基础 2. S参数在信号完整性中的作用 3. 单端 vs. 差分S参数 4. S参数的关键特性 5. S参数的获取与使用 6. S参数分析中的常见问题 7. 实际案例:PCIe通道分析 8. 工具推荐 总结 信号完整性中…...
6.2.4 基本的数据模型
文章目录 基本的数据模型 基本的数据模型 基本的数据模型包含层次模型,网状模型和关系模型。 层次模型:使用树型结构表示数据间联系。记录间的联系用指针实现,简单高效。但是只能表示1:n的联系,且对插入、删除的限制多。网状模型…...
DeepSeek ,银行营销会被 AIGC 颠覆吗?
AI 让银行营销更智能,但更重要的是“懂客户” AI 在银行营销中的应用已经不仅仅局限于文案生成,而是渗透到了整个营销流程。 据悉,中国银行已经开始利用 AI 大模型构建智能营销助手系统,结合知识图谱和 AI 技术,实现…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...
MFC 抛体运动模拟:常见问题解决与界面美化
在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...
6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础
第三周 Day 3 🎯 今日目标 理解类(class)和对象(object)的关系学会定义类的属性、方法和构造函数(init)掌握对象的创建与使用初识封装、继承和多态的基本概念(预告) &a…...
Axure 下拉框联动
实现选省、选完省之后选对应省份下的市区...
LangChain 中的文档加载器(Loader)与文本切分器(Splitter)详解《二》
🧠 LangChain 中 TextSplitter 的使用详解:从基础到进阶(附代码) 一、前言 在处理大规模文本数据时,特别是在构建知识库或进行大模型训练与推理时,文本切分(Text Splitting) 是一个…...
【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解
一、前言 在HarmonyOS 5的应用开发模型中,featureAbility是旧版FA模型(Feature Ability)的用法,Stage模型已采用全新的应用架构,推荐使用组件化的上下文获取方式,而非依赖featureAbility。 FA大概是API7之…...

