当前位置: 首页 > news >正文

机器学习:01数学基础教程

函数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

极限

按照一定次数排列的一列数:“,“,…,"…,其中u 叫做通项

对于数列{Un}如果当n无限增大时,其通项无限接近于一个常数A,则称该数列以A为极限或称数列收敛于A,否则称数列为发散,

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

极限值

在这里插入图片描述

左右极限:函数在左半邻域/右半邻域内有定义

在这里插入图片描述

充要条件limx0+ =

在这里插入图片描述

无穷小

基本性质:
1.有限个无穷小的代数和仍是无穷小
2.有限个无穷小的积仍是无穷小
3.有界变量与无穷小的积仍是无穷小

4.无限个无穷小之和不一定是无穷小。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

无穷小的商不一定是无穷小。

在这里插入图片描述

极限有无穷小的关系:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

无穷大

无穷大:并不是一个很大的数,是相对于变换过程来说。

@无穷小和无穷大的关系:在自变量的变换的同一过程中

在这里插入图片描述
在这里插入图片描述

函数的连续性

在这里插入图片描述

函数的连续性的满足条件

在这里插入图片描述
在这里插入图片描述

函数的间断点

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

导数

在这里插入图片描述

导数的定义

在这里插入图片描述

常用的导数

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

求导运算

在这里插入图片描述

desmos工具

https://www.desmos.com/calculator/noanuckuli?lang=zh-CN

偏导数

在这里插入图片描述

定义

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

斜率

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

方向导数

在这里插入图片描述

定义

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

梯度

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

相关文章:

机器学习:01数学基础教程

函数 极限 按照一定次数排列的一列数:“,“,…,"…,其中u 叫做通项。 对于数列{Un}如果当n无限增大时,其通项无限接近于一个常数A,则称该数列以A为极限或称数列收敛于A,否则称数列为发散, 极限值 左…...

仿叮咚买菜鸿蒙原生APP

# DingdongShopping 这是一个原生鸿蒙版的仿叮咚买菜APP项目 鸿蒙Next发布至今已经有一年多的时间了,但有时候我们想要实现一些复杂的功能或者效果,在开发文档上查阅一些资料还是比较费时的,有可能还找不到我们想要的内容。而社会层面上分享…...

WordPress“更新失败,响应不是有效的JSON响应”问题的修复

在使用WordPress搭建网站时,许多人在编辑或更新文章时,可能会遇到一个提示框,显示“更新失败,响应不是有效的JSON响应”。这个提示信息对于不了解技术细节的用户来说,太难懂。其实,这个问题并不复杂&#x…...

kotlin的onFailure: () -> Unit

‌在Kotlin中,onFailure: () -> Unit表示一个没有参数且返回类型为Unit的函数。‌ 在Kotlin中,Unit类型用于表示那些没有返回值的函数。具体来说,() -> Unit表示一个没有参数的函数,其返回类型为Unit。这种函数通常用于表示…...

通过网线将Keysight DSOX4154A示波器信号传输至电脑的Step

一、硬件连接 连接网线 使用标准以太网线(Cat5e或更高)连接示波器背面的 LAN端口 至电脑或同一局域网的交换机/路由器。 二、示波器网络配置 进入网络设置菜单 点击示波器前面板右上角 【Utility】 → 【I/O】 → 【LAN Settings】。 配置IP地址 自…...

midjourney 一 prompt 提示词

midjourney 不需要自然语言的描述,它只需要关键词即可。 一个完整的Midjourney prompt通常包括三个部分 图片提示(Image Prompts)、文本提示(Text Prompt)和参数(Parameters)。 1、图片提示(…...

微信小程序 - 网络请求基础路径集中管理(基础路径集中管理策略、动态切换基础路径)

一、基础路径集中管理 在微信小程序项目开发中,经常会将请求的基础路径集中管理 这样可以避免在多个页面中重复定义,同时也方便后续维护与修改 二、基础路径集中管理策略 1、使用全局变量 微信小程序提供了 App 对象,可以在 app.js 中定义…...

C#的委托delegate与事件event

在C#中,delegate(委托)和 event(事件)是两个非常重要的概念,它们主要用于实现回调机制和事件驱动编程。下面详细介绍它们的原理和使用场景。 1. Delegate(委托) 1.1 委托的原理 委托…...

apache artemis安装

安装apache artemis https://xxzkid.github.io/2025/apache-artemis-install...

Lightning基础训练尝试实例

一、训练任务概述 动机:由于后续的课题中会用到类似图像去噪的算法,考虑先用U-Net,这里做一个前置的尝试。 训练任务:分割出图像中的细胞。 数据集:可私 数据集结构: 二、具体实现 U-Net的网络实现是现…...

osgearth视点坐标及鼠标交点坐标的信息显示(七)

核心函数如下: void COSGObject::addViewPointLabel() {//mRoot->addChild(osgEarth::Util::Controls::ControlCanvas::get(mViewer));//放开这句,球就卡住了。 为什么,shitosgEarth::Util::Controls::ControlCanvas* canvas = osgEarth::Util::Controls::ControlCanvas…...

动态规划 之 背包问题

文章目录 0-1背包问题2915.和为目标值的最长子序列的长度494.目标和 完全背包问题322.零钱兑换518.零钱兑换II 多重背包2585.获得分数的方法数 分组背包1155.掷骰子等于目标和的方法数 背包问题是动态规划一个很重要的一类题目,主要分为0-1背包问题以及完全背包问题…...

【Azure 架构师学习笔记】- Azure Databricks (11) -- UC搭建

本文属于【Azure 架构师学习笔记】系列。 本文属于【Azure Databricks】系列。 接上文 【Azure 架构师学习笔记】- Azure Databricks (10) – UC 使用 前言 由于ADB 的更新速度很快,在几个月之后重新搭建ADB 时发现UC 已经更新了很多,为了后续做ADB 的功…...

RTMP(Real-Time Messaging Protocol)

RTMP(Real-Time Messaging Protocol)是一种用于实时音视频和数据传输的协议,常见于直播和流媒体应用。 一 RTSP 协商消息 一、消息类型(Message Types) RTMP消息分为多种类型,通过Message Type ID标识&a…...

docker容器部署jar应用导入文件时候报缺少字体错误解决

如题,在导入文件时候报错如下: Handler dispatch failed; nested exception is java.lang.NoClassDefFoundError: Could not initialize class sun.awt.X11FontManager 经查是缺少对应字体,解决办法有两张: 第一种:…...

贪吃蛇解析

目录 文章结尾有代码可自取 Win32API 光标的隐藏 获取按键信息 控制光标位置 游戏开始前的准备 游戏准备及介绍 加载和欢迎界面 打印游戏指南 运行游戏 打印墙体和说明 设置蛇的各个信息 初始化及打印蛇 创造食物 运行游戏 1)打印得分情况 2&#…...

vue非组件的初学笔记

1.创建Vue实例,初始化渲染的核心 准备容器引包创建Vue实例new Vue() el用来指定控制的盒子data提供数据 2.插值表达式 作用利用表达式插值,将数据渲染到页面中 格式{{表达式}} 注意点 表达式的数据要在data中存在表达式是可计算结果的语句插值表达式…...

LeetCode 热题 100_单词搜索(60_79_中等_C++)(深度优先搜索(回溯))(初始化二维vector的大小)

LeetCode 热题 100_单词搜索(60_79) 题目描述:输入输出样例:题解:解题思路:思路一(深度优先搜索(回溯)): 代码实现代码实现(思路一&am…...

js闭包,跨域

js闭包,跨域 闭包 想象一下,你家有个大仓库(函数),仓库里放着各种东西(变量)。一般情况下,你从仓库外面是看不到也拿不到仓库里的东西的。但是,闭包就像是你在仓库里留…...

算法练习(力扣-BFS)——102. 二叉树的层序遍历

题目描述(简要概括) 题目链接:102. 二叉树的层序遍历 - 力扣(LeetCode) 题目要求对给定的二叉树进行层序遍历(从上到下,从左到右),并返回遍历的结果。层序遍历是一种基…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区(Partitioning)是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分(分区)可以独立存储、管理和优化,…...

Qt 事件处理中 return 的深入解析

Qt 事件处理中 return 的深入解析 在 Qt 事件处理中,return 语句的使用是另一个关键概念,它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别:不同层级的事件处理 方…...