当前位置: 首页 > news >正文

redis解决高并发看门狗策略

当一个业务执行时间超过自己设定的锁释放时间,那么会导致有其他线程进入,从而抢到同一个票,所有需要使用看门狗策略,其实就是开一个守护线程,让守护线程去监控key,如果到时间了还未结束,就会将这个key重新set一次,重置到原来的时间,只要主线程未结束,守护线程就会一直存在,这里还是会有一些问题,就是如果redis宕机了,导致第一个线程拿到了锁,第二个线程也拿到了锁,为了解决这个就需要引入红锁

1. 导入依赖,这里导入依赖可能会和原先的redis依赖冲突,所以只能留下一个,不然可能会出错

去除spring-boot-starter-data-redis

  <!-- 集成Redis--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependency>

添加redisson

            <dependency><groupId>org.redisson</groupId><artifactId>redisson-spring-boot-starter</artifactId><version>3.21.0</version></dependency>

2. 修改配置文件,将之前的配置缓存redisson的

spring:data:redis: # redis配置url: redis://:127.0.0.1:6379

3. 开始分布式锁-看门狗策略,找到高频访问的业务添加以下代码

在业务方法开始的头添加

在方法末尾添加释放锁,别忘了添加try-catch-finally块


这是一段完整的分布式处理,有需要直接copy后修改即可

  public void doConfirm(ConfirmOrderDoReq req) {String lockKey = DateUtil.formatDate(req.getDate()) + "-" + req.getTrainCode();RLock lock = null;try {lock = redissonClient.getLock(lockKey);boolean tryLock = lock.tryLock(0, TimeUnit.SECONDS);if (tryLock) {LOG.info("抢到锁,开始处理订单");} else {LOG.info("很遗憾,没有抢到锁");//当前抢票人数多,请稍后再试throw new BusinessException(BusinessExceptionEnum.CONFIRM_ORDER_LOCK_FAIL);}//业务处理。。。。} catch (InterruptedException e) {LOG.error("抢票失败", e);throw new BusinessException(BusinessExceptionEnum.CONFIRM_ORDER_LOCK_FAIL);} finally {LOG.info("锁被释放了");// 释放锁if (lock != null && lock.isHeldByCurrentThread()){lock.unlock();}}}

相关文章:

redis解决高并发看门狗策略

当一个业务执行时间超过自己设定的锁释放时间&#xff0c;那么会导致有其他线程进入&#xff0c;从而抢到同一个票,所有需要使用看门狗策略&#xff0c;其实就是开一个守护线程&#xff0c;让守护线程去监控key&#xff0c;如果到时间了还未结束&#xff0c;就会将这个key重新s…...

Python函数的函数名250217

函数名其实就是一个变量&#xff0c;这个变量就是代指函数而已函数也可以被哈希&#xff0c;所以函数名也可以当作集合中的元素&#xff0c;也可作为字典的key值 # 将函数作为字典中的值&#xff0c;可以避免写大量的if...else语句 def fun1():return 123 def fun2():return 4…...

Unity 获取独立显卡数量

获取独立显卡数量 导入插件包打开Demo 运行看控制台日志 public class GetGraphicCountDemo : MonoBehaviour{public int count;// Start is called before the first frame updatevoid Start(){count this.GetIndependentGraphicsDeviceCount();}}...

JAVA生产环境(IDEA)排查死锁

使用 IntelliJ IDEA 排查死锁 IntelliJ IDEA 提供了强大的工具来帮助开发者排查死锁问题。以下是具体的排查步骤&#xff1a; 1. 编写并运行代码 首先&#xff0c;我们编写一个可能导致死锁的示例代码&#xff1a; public class DeadlockExample {private static final Obj…...

如何正确安装Stable Diffusion Web UI以及对应的xFormers

本文是我总结的步骤&#xff0c;验证了几次保证是对的。因为正确的安装 Stable Diffusion Web UI 以及对应的 xFormers 实在是太麻烦了&#xff0c;官方和网上的步骤都是残缺和分散的&#xff0c;加上国内网络速度不理想&#xff0c;所以需要一些额外步骤&#xff0c;之前研究出…...

机器学习_14 随机森林知识点总结

随机森林&#xff08;Random Forest&#xff09;是一种强大的集成学习算法&#xff0c;广泛应用于分类和回归任务。它通过构建多棵决策树并综合它们的预测结果&#xff0c;显著提高了模型的稳定性和准确性。今天&#xff0c;我们就来深入探讨随机森林的原理、实现和应用。 一、…...

机器学习基本篇

文章目录 1 基本概念2 基本流程2.0 数据获取2.1 预处理2.1.0 认识数据认识问题2.1.1 不平衡标签的处理a.随机过采样方法 ROS,random over-samplingb. SMOTE synthetic minority Over-Sampling Technique2.2 缺失值处理2.3 数据清洗2.3.0离散特征编码2.3.1 连续特征处理归一化标…...

vue2.x与vue3.x生命周期的比较

vue2.x 生命周期图示&#xff1a; new Vue() | v Init Events & Lifecycle | v beforeCreate | v created | v beforeMount | v mounted | v beforeUpdate (when data changes) | v updated | v beforeDestroy (when vm.…...

接口测试及常用接口测试工具(Postman/Jmeter)

&#x1f345; 点击文末小卡片 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 首先&#xff0c;什么是接口呢&#xff1f; 接口一般来说有两种&#xff0c;一种是程序内部的接口&#xff0c;一种是系统对外的接口。 系统对外的接口&#xf…...

[论文阅读] SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution

文章目录 一、前言二、主要贡献三、Introduction四、Methodology4.1 Motivation &#xff1a;4.2Framework Overview.** 一、前言 通信作者是香港理工大学 & OPPO研究所的张磊教授&#xff0c;也是图像超分ISR的一个大牛了。 论文如下 SeeSR: Towards Semantics-Aware Rea…...

Python实战进阶 No1: RESTful API - 基于Flask的实例说明

Python实战进阶 No1: RESTful API - 基于Flask的实例说明 RESTful API 是一种基于 REST&#xff08;Representational State Transfer&#xff09; 架构风格的 Web 服务接口设计规范。它使用 HTTP 协议的标准方法&#xff08;如 GET、POST、PUT、DELETE 等&#xff09;来操作资…...

Redis——优惠券秒杀问题(分布式id、一人多单超卖、乐悲锁、CAS、分布式锁、Redisson)

#想cry 好想cry 目录 1 全局唯一id 1.1 自增ID存在的问题 1.2 分布式ID的需求 1.3 分布式ID的实现方式 1.4 自定义分布式ID生成器&#xff08;示例&#xff09; 1.5 总结 2 优惠券秒杀接口实现 3 单体系统下一人多单超卖问题及解决方案 3.1 问题背景 3.2 超卖问题的…...

OpenCV机器学习(5)逻辑回归算法cv::ml::LogisticRegression

OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 cv::ml::LogisticRegression 是 OpenCV 机器学习模块中的一个类&#xff0c;用于实现逻辑回归算法。逻辑回归是一种广泛应用于分类问题的统计方法&#xff0c;特别适合二分类任务。…...

百度百舸 DeepSeek 一体机发布,支持昆仑芯 P800 单机 8 卡满血版开箱即用

在私有云环境中成功部署 DeepSeek 满血版并实现性能调优&#xff0c;并不是一件容易的事情。选择合适的 GPU 配置、安装相应的环境、成功部署上线业务、加速推理任务加速、支撑多用户并发 …… 完成业务测试&#xff0c;成功融入生产业务中。 为了帮助企业快速实现 DeepSeek 服…...

批处理效率提升技巧

在数据量大的后端应用程序中进行批处理(batch processing)是非常常见的需求,尤其是在需要处理大量数据或进行周期性任务时。批处理的目的是通过将数据分批次处理来提高效率,减少资源消耗,并确保应用程序的可伸缩性。以下是一些在这种场景下进行批处理的方法和实践: 一、…...

Kubernetes知识点总结(十)

什么是 K8s 的 namespace&#xff1f; 在 K8s 中&#xff0c;Namespace&#xff08;名字空间&#xff09;提供了一种机制&#xff0c;将同一集群中的资源划分为相互隔离的组&#xff0c; 是在多个用户之间划分集群资源的一种方法。 名字空间作用域仅针对带有名字空间的对…...

安全防御综合练习2 nat+智能选路

一、拓扑 二、需求 1、在企业出口防火墙上&#xff0c;设置一个“虚拟DNS服务器”&#xff0c;将内网用户的DNS设定为这个虚拟DNS服务器的地址 2、当内网用户发送DNS请求时&#xff0c;虚拟DNS服务器作为中间人&#xff0c;根据预配置算法&#xff0c;将DNS请求报文发送给各个…...

Flutter 中的数据跨层传递方案

在 Flutter 中&#xff0c;数据跨层传递&#xff08;从父组件向子组件传递数据&#xff0c;或从子组件向父组件传递&#xff09;有多种方案&#xff0c;主要包括以下几种&#xff1a; 1. 直接参数传递&#xff08;Constructor 参数&#xff09; 适用场景&#xff1a; 父组件向…...

代码随想录D50-51 图论 Python

理论基础 理论基础部分依然沿用代码随想录教程中的介绍&#xff1a; 图的种类 度 连通性 连通性用于表示图中节点的连通情况。 如果有节点不能到达其他节点&#xff0c;则为非连通图&#xff0c;想象将多个水分子表示为图&#xff0c;不考虑非键作用&#xff0c;这张图就不是…...

MyBatis进阶

日志的使用 我们在使用MyBatis的时候, 其实MyBatis框架会打印一些必要的日志信息, 在开发阶段这些日志信息对我们分析问题,理解代码的执行是特别有帮助的; 包括项目上线之后,我们也可以收集项目的错误日志到文件里面去; 所以我们采用专门的日志系统来处理. 步骤 导入坐标拷贝…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

vscode(仍待补充)

写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh&#xff1f; debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...

从面试角度回答Android中ContentProvider启动原理

Android中ContentProvider原理的面试角度解析&#xff0c;分为​​已启动​​和​​未启动​​两种场景&#xff1a; 一、ContentProvider已启动的情况 1. ​​核心流程​​ ​​触发条件​​&#xff1a;当其他组件&#xff08;如Activity、Service&#xff09;通过ContentR…...

uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)

UniApp 集成腾讯云 IM 富媒体消息全攻略&#xff08;地理位置/文件&#xff09; 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型&#xff0c;核心实现方式&#xff1a; 标准消息类型&#xff1a;直接使用 SDK 内置类型&#xff08;文件、图片等&#xff09;自…...

GraphQL 实战篇:Apollo Client 配置与缓存

GraphQL 实战篇&#xff1a;Apollo Client 配置与缓存 上一篇&#xff1a;GraphQL 入门篇&#xff1a;基础查询语法 依旧和上一篇的笔记一样&#xff0c;主实操&#xff0c;没啥过多的细节讲解&#xff0c;代码具体在&#xff1a; https://github.com/GoldenaArcher/graphql…...

书籍“之“字形打印矩阵(8)0609

题目 给定一个矩阵matrix&#xff0c;按照"之"字形的方式打印这个矩阵&#xff0c;例如&#xff1a; 1 2 3 4 5 6 7 8 9 10 11 12 ”之“字形打印的结果为&#xff1a;1&#xff0c;…...

数据分析六部曲?

引言 上一章我们说到了数据分析六部曲&#xff0c;何谓六部曲呢&#xff1f; 其实啊&#xff0c;数据分析没那么难&#xff0c;只要掌握了下面这六个步骤&#xff0c;也就是数据分析六部曲&#xff0c;就算你是个啥都不懂的小白&#xff0c;也能慢慢上手做数据分析啦。 第一…...

新版NANO下载烧录过程

一、序言 搭建 Jetson 系列产品烧录系统的环境需要在电脑主机上安装 Ubuntu 系统。此处使用 18.04 LTS。 二、环境搭建 1、安装库 $ sudo apt-get install qemu-user-static$ sudo apt-get install python 搭建环境的过程需要这个应用库来将某些 NVIDIA 软件组件安装到 Je…...