LC-搜索二维矩阵II、相交链表、反转链表、回文链表、环形链表、环形链表ll
搜索二维矩阵II

方法:从右上角开始搜索
- 我们可以从矩阵的右上角开始进行搜索。
- 如果当前元素
matrix[i][j]等于target,我们直接返回true。 - 如果
matrix[i][j]大于target,说明target只能出现在左边的列,所以我们将列指针向左移动。 - 如果
matrix[i][j]小于target,说明target只能出现在下方的行,所以我们将行指针向下移动。 - 我们重复这个过程,直到找到目标元素或者行列指针越界。
class Solution {public boolean searchMatrix(int[][] matrix, int target) {if(matrix == null || matrix.length == 0 || matrix[0].length == 0){return false;}int m = matrix.length;//行数int n = matrix[0].length;//列数int row = 0;//从第一行开始int col = n-1;//从最后一列开始while(row < m && col >= 0){if(matrix[row][col] == target){return true;}else if(matrix[row][col] > target){col--;//当前元素大于目标,左移}else{row++;//当前元素小于目标,下移}}return false;}
}
相交链表

双指针法
-
两个指针分别指向两个链表的头节点:
我们设立两个指针pA和pB,分别指向链表A和链表B的头节点。 -
同时移动两个指针:
- 每次移动一个指针,如果当前指针指向的节点为空,则将其指向另一个链表的头节点。
- 这样做的目的是:让两个指针在遍历完自己的链表后,能够到达另一个链表的头节点,最终相遇的地方就是交点。
-
相遇:
如果两个指针相遇,则返回相遇的节点;如果两个指针同时指向null,则说明链表没有交点。
这种方法的核心思想就是“同步走,互相切换”,确保两个指针走过相同的路程,因此可以在 O(m + n) 时间复杂度内解决问题。
设「第一个公共节点」为 node ,「链表 headA」的节点数量为 a ,「链表 headB」的节点数量为 b ,「两链表的公共尾部」的节点数量为 c ,则有:
头节点 headA 到 node 前,共有 a−c 个节点;
头节点 headB 到 node 前,共有 b−c 个节点;
考虑构建两个节点指针 A , B 分别指向两链表头节点 headA , headB ,做如下操作:
指针 A 先遍历完链表 headA ,再开始遍历链表 headB ,当走到 node 时,共走步数为:
a+(b−c)
指针 B 先遍历完链表 headB ,再开始遍历链表 headA ,当走到 node 时,共走步数为:
b+(a−c)
如下式所示,此时指针 A , B 重合,并有两种情况:
a+(b−c)=b+(a−c)
若两链表 有 公共尾部 (即 c>0 ) :指针 A , B 同时指向「第一个公共节点」node 。
若两链表 无 公共尾部 (即 c=0 ) :指针 A , B 同时指向 null 。
因此返回 A 即可。
/*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode(int x) {* val = x;* next = null;* }* }*/
public class Solution {public ListNode getIntersectionNode(ListNode headA, ListNode headB) {ListNode pA = headA;ListNode pB = headB;while(pA != pB){pA = (pA == null) ? headB : pA.next;pB = (pB == null) ? headA : pB.next;}return pA;}
}
反转链表

双指针:
/*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}* ListNode(int val) { this.val = val; }* ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public ListNode reverseList(ListNode head) {ListNode cur = head,pre = null;while(cur != null){ListNode tmp = cur.next;cur.next = pre;pre = cur;cur = tmp;}return pre;}
}
回文链表

思路:
- 找到链表的中间节点:使用快慢指针,慢指针每次走一步,快指针每次走两步,最终快指针会指向链表的尾部,慢指针则会指向链表的中间节点。
- 反转后半部分链表:将链表的后半部分进行反转,反转后的链表与前半部分进行比较。
- 比较前后部分:比较反转后的后半部分与前半部分的节点值,如果相同,则该链表是回文链表。
/*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}* ListNode(int val) { this.val = val; }* ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public boolean isPalindrome(ListNode head) {if(head == null || head.next == null){return true;//链表为空或只有一个元素}ListNode slow = head,fast = head;//快指针走两步,慢指针走一步,直到快指针到达末尾while(fast != null && fast.next != null){slow = slow.next;fast = fast.next.next;}//反转链表的后半部分ListNode secondHalf = reverse(slow);ListNode firstHalf = head;//比较前后部分的节点值while(secondHalf != null){if(firstHalf.val != secondHalf.val){return false;}firstHalf = firstHalf.next;secondHalf = secondHalf.next;}return true;}public ListNode reverse(ListNode head){ListNode prev = null,curr = head;while(curr != null){ListNode temp = curr.next;curr.next = prev;prev = curr;curr = temp;}return prev;}
}
环形链表

- 初始化指针:使用两个指针,
slow和fast。slow每次走一步,fast每次走两步。 - 判断是否相遇:如果存在环,
slow和fast会在环内相遇。如果没有环,fast会指向null,即链表的末尾。 - 结束条件:
- 如果
slow和fast相遇,则说明链表有环,返回true。 - 如果
fast到达null,则说明链表没有环,返回false。
- 如果
/*** Definition for singly-linked list.* class ListNode {* int val;* ListNode next;* ListNode(int x) {* val = x;* next = null;* }* }*/
public class Solution {public boolean hasCycle(ListNode head) {if(head == null || head.next == null){return false;}ListNode slow = head,fast = head;while(fast != null && fast.next != null){slow = slow.next;fast = fast.next.next;if(slow == fast){return true;}}return false;}
}
环形链表ll
- 使用快慢指针检查链表是否有环。
- 如果有环,重新定位慢指针到头节点,同时让慢指针和快指针都以相同的速度(每次一步)向前走,直到它们相遇。
- 相遇的节点就是入环的第一个节点。
/*** Definition for singly-linked list.* class ListNode {* int val;* ListNode next;* ListNode(int x) {* val = x;* next = null;* }* }*/
public class Solution {public ListNode detectCycle(ListNode head) {if(head == null || head.next == null){return null;}ListNode slow = head,fast = head;while(fast != null && fast.next != null){slow = slow.next;fast = fast.next.next;if(slow == fast){//找到环的起点ListNode pointer = head;while(pointer != slow){pointer = pointer.next;//pointer从头节点开始走slow = slow.next;//slow从相遇点开始走}return pointer;}}return null;}
}相关文章:
LC-搜索二维矩阵II、相交链表、反转链表、回文链表、环形链表、环形链表ll
搜索二维矩阵II 方法:从右上角开始搜索 我们可以从矩阵的右上角开始进行搜索。如果当前元素 matrix[i][j] 等于 target,我们直接返回 true。如果 matrix[i][j] 大于 target,说明 target 只能出现在左边的列,所以我们将列指针向左…...
小米平板怎么和电脑共享屏幕
最近尝试使用小米平板和电脑屏幕分屏互联 发现是需要做特殊处理的,需要下载一款电脑安装包:小米妙享 关于这个安装包,想吐槽的是: 没有找到官网渠道,是通过其他网络方式查到下载的 不附录链接,原因是因为地…...
Python elasticsearch客户端连接常见问题整理
python 访问 elasticsearch 在python语言中,我们一般使用 pip install elasticsearch 软件包,来访问es服务器。 正确用法 本地安装elasticsearch时,应指定与服务端相同的大版本号: pip install elasticsearch7.17.0然后就可以…...
目标检测IoU阈值全解析:YOLO/DETR模型中的精度-召回率博弈与工程实践指南
一、技术原理与数学本质 IoU计算公式: IoU \frac{Area\ of\ Overlap}{Area\ of\ Union} \frac{A ∩ B}{A ∪ B}阈值选择悖论: 高阈值(0.6-0.75):减少误检(FP↓)但增加漏检(FN↑…...
算法——数学建模的十大常用算法
数学建模的十大常用算法在数学建模竞赛和实际问题解决中起着至关重要的作用。以下是这些算法的具体信息、应用场景以及部分算法的C语言代码示例(由于篇幅限制,这里只给出部分算法的简要代码或思路,实际应用中可能需要根据具体问题进行调整和扩…...
Electron:使用electron-react-boilerplate创建一个react + electron的项目
使用 electron-react-boilerplate git clone --depth 1 --branch main https://github.com/electron-react-boilerplate/electron-react-boilerplate.git your-project-name cd your-project-name npm install npm start 安装不成功 在根目录加上 .npmrc文件 内容为 electron_…...
在linux系统中安装Anaconda,并使用conda
系统 : ubuntu20.04 显卡:NVIDIA GTX1650 目录 安装Anaconda第一步:下载合适版本的Anconda1. 查看自己Linux的操作系统及架构命令:uname -a2. 下载合适版本的Anconda 第二步:安装Aanconda1. 为.sh文件设置权限2. 执行.sh文件2.1 .…...
渗透测试--文件包含漏洞
文件包含漏洞 前言 《Web安全实战》系列集合了WEB类常见的各种漏洞,笔者根据自己在Web安全领域中学习和工作的经验,对漏洞原理和漏洞利用面进行了总结分析,致力于漏洞准确性、丰富性,希望对WEB安全工作者、WEB安全学习者能有所帮助…...
Go入门之语言变量 常量介绍
func main(){var a int8 10var b int 5var c int 6fmt.Println("a", a, "b", b, "c", c)d : 10fmt.Printf("a%v leixing%T\n", d, d) } main函数是入口函数,fmt包有三个打印的函数Println,Print,Printf。第…...
DeepSeek R1 与 OpenAI O1:机器学习模型的巅峰对决
我的个人主页 我的专栏:人工智能领域、java-数据结构、Javase、C语言,希望能帮助到大家!!!点赞👍收藏❤ 一、引言 在机器学习的广袤天地中,大型语言模型(LLM)无疑是最…...
【机器学习】深入浅出KNN算法:原理解析与实践案例分享
在机器学习中,K-最近邻算法(K-Nearest Neighbors, KNN)是一种既直观又实用的算法。它既可以用于分类,也可以用于回归任务。本文将简单介绍KNN算法的基本原理、优缺点以及常见应用场景,并通过一个简单案例帮助大家快速入…...
C#使用文件读写操作实现仙剑五前传称号存档修改
手把手教学仙剑五前传 称号存档修改器 首先找到 Pal5Q所在目录的save\global.sav 文件,这是一个只有488字节的文件,这里存放称号对应的编号ID,以及是否已获得该称号,1为已获取称号,0为未获取称号 [称号:是否获取]这是一个键值对 称号的编号ID是一个Int32数字,使用C#的方法Bi…...
计算机专业知识【探秘 C/S 工作模式:原理、应用与网络协议案例】
在计算机网络的世界里,C/S 工作模式是一种非常重要且广泛应用的架构模式。它如同一位幕后功臣,默默支撑着我们日常使用的众多网络服务。下面将详细介绍 C/S 工作模式是什么,以及哪些常见的应用和网络协议采用了这种模式。 一、C/S 工作模式的…...
Django创建一个非前后端分离平台
1.pub_blog前端创立 1.blog/pub路由 注意两个路由的区别 2.完善页面 用表单实现 3.加载wangeditor的几个文件 4.配置样式 5.配置js代码,单独放在js文件夹中,js文件夹pub_blog onload事件,加载完成后会再加载 5.提交按钮...
适用于iOS的应用商店优化(ASO)清单
面对App Store的激烈竞争,您想优化您的应用使其在竞争中脱颖而出,但又不知道应该从哪里开始。我们已经为您准备好了!我们整理了一份适用于iOS的应用商店优化(ASO)检查清单,用以帮助您入门并提高您在App Sto…...
SSH远程服务器免密码连接|含注意事项细节
需求描述:我想配置本地机器到ssh远程服务器的免密码连接,注意我日常会使用的集群有多个节点,每个节点的用户名以及密码都是一样的,但是不同节点的用户目录下的数据并不互通。 方案: 配置本地机器到 SSH 远程服务器的…...
本地通过隧道连接服务器的mysql
前言 服务器上部署了 mysql,本地希望能访问该 mysql,但是又不希望 mysql 直接暴露在公网上 那么可以通过隧道连接 ssh 端口的方式进行连接 从外网看,服务器只开放了一个 ssh 端口,并没有开放 3306 监听端口 设置本地免密登录 …...
Hadoop 基础原理
Hadoop 基础原理 基本介绍Hadoop 的必要性Hadoop 核心组件Hadoop 生态系统中的附加组件 HDFSHDFS 集群架构HDFS 读写流程HDFS 写流程HDFS 读流程 NameNode 持久化机制 MapReduce底层原理示例 Hadoop 是一个由 Apache 基金会开发的分布式系统基础架构,主要解决海量数…...
JavaScript 任务队列详解:Event Loop、宏任务与微任务
JavaScript 任务队列详解:Event Loop、宏任务与微任务 在 JavaScript 的世界里,异步编程是一个至关重要的概念。JavaScript 采用 单线程 运行方式,但能够处理异步任务,这一切都要归功于 事件循环(Event Loopÿ…...
VScode运行后出现黑窗口
原文链接:VScode运行出黑窗口 1.安装插件:C/C Compile Run 2.快捷键【CtrlShiftp】,点击【首选项:打开用户设置】...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
【Linux】自动化构建-Make/Makefile
前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具:make/makfile 1.背景 在一个工程中源文件不计其数,其按类型、功能、模块分别放在若干个目录中,mak…...
elementUI点击浏览table所选行数据查看文档
项目场景: table按照要求特定的数据变成按钮可以点击 解决方案: <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...
聚六亚甲基单胍盐酸盐市场深度解析:现状、挑战与机遇
根据 QYResearch 发布的市场报告显示,全球市场规模预计在 2031 年达到 9848 万美元,2025 - 2031 年期间年复合增长率(CAGR)为 3.7%。在竞争格局上,市场集中度较高,2024 年全球前十强厂商占据约 74.0% 的市场…...
STM32标准库-ADC数模转换器
文章目录 一、ADC1.1简介1. 2逐次逼近型ADC1.3ADC框图1.4ADC基本结构1.4.1 信号 “上车点”:输入模块(GPIO、温度、V_REFINT)1.4.2 信号 “调度站”:多路开关1.4.3 信号 “加工厂”:ADC 转换器(规则组 注入…...
