当前位置: 首页 > news >正文

Vision Transformer图像分块嵌入核心技术解析:从数学推导到工业级应用

一、技术原理与数学建模

1.1 图像分块过程数学表达

给定输入图像 x ∈ R H × W × C x \in \mathbb{R}^{H \times W \times C} xRH×W×C,将其分割为 N N N 个尺寸为 P × P P \times P P×P 的图块:
x p ∈ R N × ( P 2 ⋅ C ) 其中  N = H W P 2 x_p \in \mathbb{R}^{N \times (P^2 \cdot C)} \quad \text{其中} \ N = \frac{HW}{P^2} xpRN×(P2C)其中 N=P2HW

1.2 线性投影变换

通过可学习矩阵 E ∈ R ( P 2 ⋅ C ) × D E \in \mathbb{R}^{(P^2 \cdot C) \times D} ER(P2C)×D 将展平后的图块映射到D维空间:
z 0 = [ x p 1 E ; x p 2 E ; ⋯ ; x p N E ] + E p o s z_0 = [x_p^1E; x_p^2E; \cdots; x_p^NE] + E_{pos} z0=[xp1E;xp2E;;xpNE]+Epos

案例演示:
输入224x224x3的ImageNet图像,采用16x16分块策略:

  • 分块数量:(224/16)^2 = 196
  • 每个图块维度:16x16x3 = 768
  • 投影维度D=768时,输出序列形状:196x768

二、PyTorch/TensorFlow实现对比

2.1 PyTorch工业级实现

class PatchEmbed(nn.Module):def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):super().__init__()self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)self.norm = nn.LayerNorm(embed_dim)def forward(self, x):x = self.proj(x)  # [B, C, H, W] -> [B, D, H/P, W/P]x = x.flatten(2).transpose(1, 2)  # [B, D, N] -> [B, N, D]return self.norm(x)

2.2 TensorFlow生产环境实现

class PatchEmbedding(tf.keras.layers.Layer):def __init__(self, image_size=224, patch_size=16, embed_dim=768):super().__init__()self.proj = tf.keras.layers.Conv2D(filters=embed_dim,kernel_size=patch_size,strides=patch_size)self.reshape = tf.keras.layers.Reshape((-1, embed_dim))self.norm = tf.keras.layers.LayerNormalization()def call(self, images):patches = self.proj(images)  # [B, H/P, W/P, D]seq = self.reshape(patches)  # [B, N, D]return self.norm(seq)

三、行业应用案例与性能指标

3.1 医疗影像分类(COVID-19检测)

  • 数据集:MedMNIST(112x112 CT切片)
  • 改进策略:
    • 动态分块(8x8重点区域 + 16x16全局)
    • 多尺度位置编码
  • 效果指标:
    • 准确率:92.7% vs CNN基准86.5%
    • 推理速度:87ms/样本(RTX 3090)

3.2 自动驾驶目标检测

  • 数据集:BDD100K(1280x720街景)
  • 优化方案:
    • 分层分块(32x32粗粒度 + 16x16细粒度)
    • 空间注意力增强
  • 性能提升:
    • mAP@0.5:78.4 → 82.1
    • 内存消耗降低37%

四、超参数调优工程实践

4.1 Patch尺寸选择策略

输入尺寸推荐尺寸适用场景计算复杂度
256x25616x16通用分类任务1.0×
384x38432x32细粒度识别0.7×
512x51216x16高分辨率检测3.2×

4.2 位置编码方案对比

# 可学习位置编码(ViT原始方案)
self.pos_embed = nn.Parameter(torch.randn(1, num_patches, embed_dim))# 相对位置编码(Twins改进方案)
self.rel_pos_embed = nn.Conv2d(embed_dim, embed_dim, 3, padding=1, groups=embed_dim)# 正弦位置编码(DeiT方案)
pos_embed = get_sinusoid_encoding(num_patches, embed_dim)
self.register_buffer('pos_embed', pos_embed)

4.3 混合精度训练配置

# 训练配置文件
train:batch_size: 512precision: "bf16"  # 相比fp32节省40%显存gradient_clipping: 1.0optimizer:name: adamwlr: 3e-4weight_decay: 0.05

五、2023年前沿技术进展

5.1 动态分块技术

  • DynamicViT(ICCV 2023)
    • 自适应合并冗余patch
    • 计算量减少35%,精度损失<0.5%
    • 实现代码:
    class DynamicPatchMerging(nn.Module):def forward(self, x, decision_mask):# x: [B, N, D], mask: [B, N]x = x * decision_mask.unsqueeze(-1)return x[:, mask.sum(dim=1)>0, :]
    

5.2 分层结构演进

  • Twins-SVT(NeurIPS 2022)
    • 交替使用局部注意力和全局注意力
    • ImageNet Top-1 Acc:84.3%
    • 计算效率提升2.1倍

5.3 混合架构突破

  • ConvNeXt-ViT(CVPR 2023)
    • 第一阶段采用4x4 Conv stem
    • 相比标准ViT节省21%训练时间
    • 关键结构:
    stem = nn.Sequential(nn.Conv2d(3, 64, kernel_size=4, stride=4),LayerNorm(64)
    )
    

六、开源项目推荐

  1. TIMM库(PyTorch)

    • 支持50+ ViT变种
    • 预训练模型一键加载
    pip install timm
    model = timm.create_model('vit_base_patch16_224', pretrained=True)
    
  2. JAX-ViT(Google Research)

    • 支持TPU原生加速
    • 混合精度训练速度提升3倍
    from jaxvit import ViT
    model = ViT(num_classes=1000, patch_size=16)
    
  3. OpenMMLab ViT(工业级实现)

    • 提供生产环境部署方案
    • 支持TensorRT加速
    from mmcls.models import VisionTransformer
    cfg = dict(embed_dims=768, num_layers=12)
    

七、性能优化checklist

  1. 输入预处理优化

    • 启用torch.compile()(PyTorch 2.0+)
    • 使用tf.function XLA优化(TensorFlow)
  2. 内存优化技巧

    # 梯度检查点技术
    model = gradient_checkpointing(model)
    # 激活值量化
    torch.quantization.quantize_dynamic(model, dtype=torch.qint8)
    
  3. 分布式训练配置

    # 多机训练启动命令
    torchrun --nproc_per_node=8 --nnodes=4 train.py
    

通过本文的系统性梳理,读者可以深入掌握Vision Transformer的核心分块嵌入技术,从理论推导到工程实践形成完整知识体系。最新的技术演进表明,结合动态分块、混合架构等创新方法,ViT正在突破计算效率瓶颈,向工业级部署加速迈进。

相关文章:

Vision Transformer图像分块嵌入核心技术解析:从数学推导到工业级应用

一、技术原理与数学建模 1.1 图像分块过程数学表达 给定输入图像 x ∈ R H W C x \in \mathbb{R}^{H \times W \times C} x∈RHWC&#xff0c;将其分割为 N N N 个尺寸为 P P P \times P PP 的图块&#xff1a; x p ∈ R N ( P 2 ⋅ C ) 其中 N H W P 2 x_p \in \m…...

【产品资料】陀螺匠·企业助手v1.8 产品介绍

陀螺匠企业助手是一套采用Laravel 9框架结合Swoole高性能协程服务与Vue.js前端技术栈构建的新型智慧企业管理与运营系统。该系统深度融合了客户管理、项目管理、审批流程自动化以及低代码开发平台&#xff0c;旨在为企业提供一站式、数字化转型的全方位解决方案&#xff0c;助力…...

深度求索-DeepSeek-R1本地部署指南

1、参考&#xff1a;部署指南 2、参考&#xff1a;deepseek本地部署只需三步 DeepSeek本地部署只需三步&#xff1a; 1、安装运行环境&#xff1a;安装 Ollama&#xff1a;Ollama官网&#xff1a;官网 2、下载模型&#xff1a;参数越大&#xff0c;需要物里硬件越多 3、安装部…...

代码随想录day12

144.二叉树的前序遍历 //明确递归的函数&#xff0c;结束边界&#xff0c;单层逻辑 void traversal(TreeNode* node, vector<int>& list){if(node nullptr){return;}list.push_back(node->val);traversal(node->left, list);traversal(node->right, list)…...

告别第三方云存储!用File Browser在Windows上自建云盘随时随地访问

文章目录 前言1.下载安装File Browser2.启动访问File Browser3.安装cpolar内网穿透3.1 注册账号3.2 下载cpolar客户端3.3 登录cpolar web ui管理界面3.4 创建公网地址 4.固定公网地址访问 前言 无论是个人用户还是企业团队&#xff0c;都希望能够有一个高效、安全的解决方案来…...

Ubuntu 下 nginx-1.24.0 源码分析 - NGX_MAX_ALLOC_FROM_POOL

NGX_MAX_ALLOC_FROM_POOL 定义在 src\core\ngx_palloc.h #define NGX_MAX_ALLOC_FROM_POOL (ngx_pagesize - 1) 在 src/os/unix/ngx_alloc.h extern ngx_uint_t ngx_pagesize; 这个全局变量定义在 src\os\unix\ngx_alloc.c 中 ngx_uint_t ngx_pagesize; 在 src/os/unix/ngx_…...

PyQt6/PySide6 的 SQL 数据库操作(QtSql)

一、核心组件架构 1.1 QtSql模块构成 QSqlDatabase&#xff1a;数据库连接管理&#xff08;支持连接池&#xff09;QSqlQuery&#xff1a;SQL语句执行与结果遍历QSqlTableModel&#xff1a;可编辑的表格数据模型QSqlQueryModel&#xff1a;只读查询结果模型QSqlRelationalTab…...

利用IDEA将Java.class文件反编译为Java文件:原理、实践与深度解析

文章目录 引言&#xff1a;当.class文件遇到源代码缺失第一章&#xff1a;反编译技术基础认知1.1 Java编译执行原理1.2 反编译的本质1.3 法律与道德边界 第二章&#xff1a;IDEA内置反编译工具详解2.1 环境准备2.2 三步完成基础反编译2.3 高级反编译技巧2.3.1 调试模式反编译2.…...

Kafka偏移量管理全攻略:从基础概念到高级操作实战

#作者&#xff1a;猎人 文章目录 前言&#xff1a;概念剖析kafka的两种位移消费位移消息的位移位移的提交自动提交手动提交 1、使用--to-earliest重置消费组消费指定topic进度2、使用--to-offset重置消费offset3、使用--to-datetime策略指定时间重置offset4、使用--to-current…...

【R语言】GitHub Copilot安装-待解决

参考&#xff1a; 文章目录...

软件定义汽车时代的功能安全和信息安全

我是穿拖鞋的汉子&#xff0c;魔都中坚持长期主义的汽车电子工程师。 老规矩&#xff0c;分享一段喜欢的文字&#xff0c;避免自己成为高知识低文化的工程师&#xff1a; 简单&#xff0c;单纯&#xff0c;喜欢独处&#xff0c;独来独往&#xff0c;不易合同频过着接地气的生活…...

qt的QSizePolicy的使用

使用 QSizePolicy 设置控件的伸缩因子 在 Qt 中&#xff0c;QSizePolicy 控制 控件如何在布局中伸缩。如果想要影响控件的大小调整行为&#xff0c;可以通过 QSizePolicy::setHorizontalStretch() 和 QSizePolicy::setVerticalStretch() 设置伸缩因子。 基本用法 假设我们有一个…...

简单几个步骤完成 Oracle 到金仓数据库(KingbaseES)的迁移目标

作为国产数据库的领军选手&#xff0c;金仓数据库&#xff08;KingbaseES&#xff09;凭借其成熟的技术架构和广泛的市场覆盖&#xff0c;在国内众多领域中扮演着至关重要的角色。无论是国家电网、金融行业&#xff0c;还是铁路、医疗等关键领域&#xff0c;金仓数据库都以其卓…...

DeepSeek自动化写作软件

DeepSeek写作软件的三大核心功能 对于内容创作者来说&#xff0c;写作不仅是表达思想的过程&#xff0c;更是一项需要投入大量时间和精力的任务。面对日益增长的内容需求&#xff0c;写作效率低下、内容质量不高等问题&#xff0c;常常让创作者感到焦虑。而 DeepSeek 写作软件…...

【kafka系列】Kafka如何实现高吞吐量?

目录 1. 生产者端优化 核心机制&#xff1a; 关键参数&#xff1a; 2. Broker端优化 核心机制&#xff1a; 关键源码逻辑&#xff1a; 3. 消费者端优化 核心机制&#xff1a; 关键参数&#xff1a; 全链路优化流程 吞吐量瓶颈与调优 总结 Kafka的高吞吐能力源于其生…...

learn_pytorch03

第三章 深度学习分为如下几个步骤 1&#xff1a;数据预处理&#xff0c;划分训练集和测试集 2&#xff1a;选择模型&#xff0c;设定损失函数和优化函数 3&#xff1a;用模型取拟合训练数据&#xff0c;并在验证计算模型上表现。 接着学习了一些数据读入 模型构建 损失函数的构…...

机器学习:k近邻

所有代码和文档均在golitter/Decoding-ML-Top10: 使用 Python 优雅地实现机器学习十大经典算法。 (github.com)&#xff0c;欢迎查看。 K 邻近算法&#xff08;K-Nearest Neighbors&#xff0c;简称 KNN&#xff09;是一种经典的机器学习算法&#xff0c;主要用于分类和回归任务…...

redis之lua实现原理

文章目录 创建并修改Lua环境Lua环境协作组件伪客户端lua scripts字典 EVAL命令的实现定义脚本函数执行脚本函数 EVALSHA命令的实现脚本管理命令的实现SCRIPT FLUSHSCRIPTEXISTSSCRIPT LOADSCRIPT KILL 脚本复制复制 EVAL命令、SCRIPT FLUSH命令和SCRIPT LOAD命令* 复制EVALSHA命…...

[Android] 【汽车OBD软件】Torque Pro (OBD 2 Car)

[Android] 【汽车OBD软件】Torque Pro &#xff08;OBD 2 & Car&#xff09; 链接&#xff1a;https://pan.xunlei.com/s/VOIyKOKHBR-2XTUy6oy9A91yA1?pwdm5jm# 获取 OBD 故障代码、汽车性能数据等等。Torque 使用连接到您的 OBD2 发动机管理/ECU 的 OBD II 蓝牙适配器。…...

安全问答—安全的基本架构

前言 将一些安全相关的问答进行整理汇总和陈述&#xff0c;形成一些以问答呈现的东西&#xff0c;加入一些自己的理解&#xff0c;欢迎路过的各位大佬进行讨论和论述。很多内容都会从甲方的安全认知去进行阐述。 1.安全存在的目的&#xff1f; 为了支持组织的目标、使命和宗…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”&#xff08;简单设计&#xff09;是软件开发中的一个重要理念&#xff0c;倡导以最简单的方式实现软件功能&#xff0c;以确保代码清晰易懂、易维护&#xff0c;并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计&#xff0c;遵循“让事情保…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言&#xff1a; 在Java编程中&#xff0c;类的生命周期是指类从被加载到内存中开始&#xff0c;到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期&#xff0c;让读者对此有深刻印象。 目录 ​…...